

RMG Brighton

Flood Risk Assessment June 2023

Mott MacDonald 4th Floor Derwent House 150 Arundel Gate Sheffield S1 2JY United Kingdom

T +44 (0)114 2761242 mottmac.com

Royal Mail Group

RMG Brighton

Flood Risk Assessment

June 2023

Issue and Revision Record

Revision	Date	Approver	Description
P01	22/10/21	S2 – For Information	Draft – For Comment
P02	05/06/22	S2 – For Information	RIBA Stage 2 Issue
P03	05/06/23	S2 – For Information	Clarification on impermeably lined SuDS features. Updated to match latest SW correspondence

Document reference: 100103689 | BDO-MMD-XX-00-RP-C-0001 |

Information class: Standard

This document is issued for the party which commissioned it and for specific purposes connected with the abovecaptioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it.

Contents

Exe	ecutive	summa	ry	1
1	Intro	duction		2
2	Exis	ting Site		4
	2.1	Site Loc	cation	4
	2.2	Site De	scription	4
	2.3	Existing	Site Drainage	5
	2.4	Existing	Land Drainage	5
	2.5	Existing	Watercourse	6
3	Sou	rces and	Extents of Flooding	7
	3.1	Summa	ry	7
	3.2	Natural	Drainage	7
		3.2.1	Fluvial Flooding	7
		3.2.2	Pluvial Flooding	8
		3.2.3	Overland Flow	9
		3.2.4	Ground Water Flooding	9
		3.2.5	Climate Change	10
	3.3	Artificial	Drainage	10
		3.3.1	Adopted Drainage	10
		3.3.2	Private Drainage System	11
		3.3.3	Highway Drainage	11
		3.3.4	Reservoir Flooding	12
		3.3.5	Development Drainage	12
4	Seq	uential T	est	14
5	Floo	d Risk M	litigation	15
	5.1	Summa	ry	15
	5.2	Control	of Surface Water Run-off	15
		5.2.1	Infiltration Based Systems	15
		5.2.2	Watercourses	15
		5.2.3	Adopted Sewers	16
	5.3	Allowab	le Site Discharge	16
	5.4	Site Atte	enuation	17
	5.5	Sustain	able Drainage Systems (SuDS) and Water Quality	17
		5.5.1	Living or Green Roofs	18
		5.5.2	Ponds and Basins	19

		5.5.3	Filter Strips and Swales	19
		5.5.4	Rain Gardens	19
		5.5.5	Permeable Paving	19
		5.5.6	Cellular Storage	20
		5.5.7	Tank or Culvert Storage	20
		5.5.8	Surface Storage	21
	5.0	5.5.9	Oversized Pipework	21
	5.6 5.7	RUNOT		22
	5.7 5.8	SuDS 3	Example	23
	5.9	Exceed	ance Routing	23
	5.10	Foul Dra	ainage	24
	5.11	Flood R	Resilience and Resistance	24
	5.12	Adoptio	n and Maintenance	24
6	Cond	clusions	and Recommendations	26
A.	Торс	ographic	al Data	28
B.	Sout	hern Wa	ater Maps and Correspondence	29
C.	Prop	osed De	evelopment Layout	30
D.	Indic	ative Dr	rainage Masterplan	31
E.	Micro	Draina	ge Calculations	32
F.	Туріс	cal SuD	S Maintenance Regime	33

Executive summary

Mott MacDonald (MM) was commissioned to carry out a Flood Risk and Runoff Assessment for the proposed development site for RMG Brighton.

This report is to support a Full Planning Application for this site and to incorporate a SuDS based storm water management scheme.

The site is to be assessed with regard to the requirements of the Planning Practice Guidance (PPG) and the associated Technical Guidance to determine the suitability of the proposed development on the site.

As well as fluvial flood risk the report will also assess the risk posed locally by the development itself and the runoff it may generate.

This element will include a general overview of the suitability of Sustainable Drainage Systems (SuDS) type systems.

If required, mitigation measures and recommendations will be made that will enable the site to be suitably developed while actively seeking to reduce flood risk locally.

The following guidelines and references have been used in the preparation of this report:

- Planning Practice Guidance Technical Guidance (PPG-TG)¹
- Environment Agency Flood Risk Standing Advice for England²
- National Highways HADDMS asset database
- Mott MacDonald archives

The report is also based on additional information received from the Environment Agency (EA), Southern Water (SW) and Brighton & Hove City Council.

The report concludes that the development is suitable for this location and can be safely developed to manage and control all identified long term residual flood risks in this area. The provision of a positive drainage system on the site may also contribute to a reduction in flood risk locally.

Notwithstanding this, it is demonstrated that the layout can be developed to incorporate a SuDS based system that will not only provide adequate runoff protection but will also provide an improvement in the runoff quality.

¹ http://planningguidance.planningportal.gov.uk/blog/guidance/flood-risk-and-coastal-change/

² https://www.gov.uk/flood-risk-assessment-local-planning-authorities

1 Introduction

RMG Brighton is a proposed new delivery office in Patcham, Brighton. The site is proposed to comprise a delivery office, vehicular parking, and soft landscaping. The development site has an area of approximately 1.58ha.

The Government has placed increasing priority on the need to take full account of the risks associated with flooding at all stages of the planning and development process, to reduce future damage to property and loss of life. The PPG- Technical Guidance (PPG-TG) identifies how the issue of flooding is dealt with in the drafting of planning policy and the consideration of planning applications.

The purpose of this report is to assist our client and the Local Planning Authority to make an informed decision on the flood risks associated with the site development.

Local Planning Authorities have the powers to control development in accordance with the guidelines contained in PPG-TG, and are expected to apply a risk-based approach to development with the Sequential Test in Table 1.1. This sets out a sequential characterisation of flood risk in terms of annual probability of river, tidal and coastal flooding.

In accordance with the sequential test in the technical guidance, sites are to be classed as follows: $^{\scriptscriptstyle 3}$

Flood Zone	Appropriate Users
Flood Zone 1 - Low Probability This zone comprises land having less than 1 in 1000 annual probability of river or sea flooding (<0.1%)	All uses of land are appropriate in this zone
Flood Zone 2 - Medium Probability This zone comprises land assessed as having between 1 in 100 and 1 in 1000 annual probability of river flooding (1%-0.1%) or between 1 in 200 and 1 in 1000 annual probability of sea flooding (0.5%- 0.1%) in any year	The water-compatible, less vulnerable and more vulnerable uses of land and essential infrastructure in Table D.2 are appropriate in this Zone Subject to the Sequential Test being applied, the highly vulnerable uses in Table D.2 are only appropriate in this zone if the Exception Test is passed
Flood Zone 3a - High Probability This zone comprises land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%) or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year	The water-compatible and less vulnerable uses of land in Table D.2 area appropriate in this zone. The highly vulnerable uses in Table D.2 should not be permitted in this zone. The more vulnerable and essential infrastructure uses in Table D.2 should only be permitted in this zone if the Exception Test is passed. Essential infrastructure permitted in this should be designed and constructed to remain operational and safe for users in time of flood.
Flood Zone 3b - Functional Floodplain This zone comprises land where water has to flow or be stored in times of flood. SFRAs should identify this Flood Zone (land which would flood with an annual probability of 1 in 20 (5%) or greater in any year or is designed to flood in an extreme (0.1%) flood, or at another probability to be agreed between the LPA and the Environment Agency, including water conveyance routes)	Only the water-compatible uses and the essential infrastructure listed in Table D.2 that has to be there should be permitted in this zone. It should be designed and constructed to: Remain operational and safe for users in times of flood; Result in no net loss of floodplain storage; Not impede water flows; and not increase flood risk elsewhere. Essential infrastructure in this zone should pass the Exception Test.

Table 1.1: Flood Zones – PPG-TG Table 1 and 3

Sourcehttps://www.gov.uk/guidance/flood-risk-and-coastal-change#Table-1-Flood-Zones

³ <u>https://www.gov.uk/guidance/flood-risk-and-coastal-change#Table-1-Flood-Zones</u>

Mott MacDonald has followed accepted procedure in providing the services but given the residual risk associated with any prediction and the variability which can be experienced in flood conditions, we take no liability for and give no warranty against actual flooding of any property (client's or third party) or the consequences of flooding in relation to the performance of the service. This report has been prepared for the purposes of planning approval only and is to assist our client and the Local Planning Authority to make an informed decision on the flood risks associated with the site redevelopment.

Allowance for the effects of climate change will be made in accordance with government recommendations in place and statistical data available at the time of writing this report. These recommendations may become more onerous, and the statistical data may be revised in the future; we will not make any estimate of what changes may result from this. Please be aware that this, and other issues over which the Mott MacDonald has no control, may affect future flood risk at the development and require further work to be undertaken for which we accept no liability.

2 Existing Site

2.1 Site Location

The proposed development site is centred at National Grid Reference (NGR) TQ 30217 09266 and is located in Patcham, Brighton approximately 5km north of Brighton city centre.

Figure 2.1: Site Location Plan

Source: Google Earth

The carriageway of the A27 is to the north and west of the site, Vale Avenue to the south and allotments to the east. The site is on the periphery of a predominantly residential area located to the south and east.

2.2 Site Description

The existing site consists of seven unoccupied buildings (barns and farmhouses) and one recently tenanted property in the east, as well as access roads and several hard paved areas. The development site area is approximately 1.58ha, with the existing access off Vale Avenue to the south. Topographical data (ref JKK10124-01), included in Appendix A, indicates that the general fall on the site is northeast to southwest, with an approximate 11m level difference between the northern and southern boundaries.

2.3 Existing Site Drainage

No existing drainage records or utilities surveys were available at the time of writing of this report. The topographical survey notes several manholes and inspection chambers on the site which may be part of an existing drainage system.

Sewer records from Southern Water have been obtained and are included in Appendix B for reference. The records show that there is a 150mm diameter combined sewer under Vale Avenue to the south of the site entrance. The manhole to the south of the site on Vale Avenue (ref TQ30092102) is noted to have an invert level of 66.83mAOD and a cover level of 68.81mAOD.

Highway drainage records appear to show a connection from the site to the highway drainage on the A27 to the west of the site, as shown in the extract in Figure 2.2 below. However, no utility or CCTV survey has been able to be completed to date to confirm this connection.

A dye test has been completed to confirm if the existing site communicates with the adopted sewer in Vale Avenue. The existing drainage system was blocked, and no dye made it through to the adopted sewer. More intrusive drainage investigation will be required at detailed design stage to confirm the connection. This activity is currently restricted due to permissions related to planning consent.

Figure 2.2: Highway Drainage

Source: National Highways HADDMS

2.4 Existing Land Drainage

Available topographical data does not appear to show any land drainage within the boundary of the site.

2.5 Existing Watercourse

Ordnance Survey mapping notes there to be a balancing pond 50m west of the western site boundary (immediately west of the A27). The English Channel is located approximately 5km south of the site.

3 Sources and Extents of Flooding

3.1 Summary

Table 3.1: Summary of Sources and Extent of Flooding

Potential Source of Flooding	Is there a risk to the development?	Risk Level	Comment
Fluvial Flooding	No	Very low	In Flood Zone 1
Pluvial Flooding and Overland Flow	No	Very low	Site protected by topography
Ground Water Flooding	No	Low	Groundwater noted to be close to the surface in LLFA guidance, however monitoring boreholes to a depth of 2m bgl did not encounter groundwater
Adopted Drainage	No	Low	Site at a higher level than drainage assets
Highway Drainage	No	Low	Site at a higher level than surrounding roads and highway drainage
Reservoir Flooding	No	Very Low	Mapping shows site outside inundation envelope
Development Drainage	Yes	Medium	Increase in impermeable area requires mitigation using SuDS

3.2 Natural Drainage

3.2.1 Fluvial Flooding

3.2.1.1 Source and Extent

With reference to the EA's indicative flood maps, accessed June 2023, it can be seen that the whole site lies in Flood Zone 1, which is an area of very low flood risk from fluvial flooding (see Figure 3.1 below).

Figure 3.1: EA Mapping – Fluvial Flood Risk

8

High Medium Low Very Low Cocation you selected

Source: EA Flood mapping June 2023 © Crown copyright and database rights 2023 OS 100024198.

3.2.1.2 Flood Risk to Development

The site is shown to be in Flood Zone 1 and therefore considered to be at very low flood risk, less than 0.1% annual exceedance probability (AEP) from this source.

3.2.2 Pluvial Flooding

3.2.2.1 Source and Extent

With reference to the EA's online mapping, accessed June 2023, data related to the risk of potential surface water inundation or flooding is provided in Figure 3.2 below. This shows that the site lies in an area of very low pluvial flood risk (<0.1% AEP). Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding.

Figure 3.2: EA Mapping – Pluvial Flood Risk

Extent of flooding from surface water

High Medium Low VeryLow Cocation you selected

Source: EA Flood mapping June 2023 © Crown copyright and database rights 2023 OS 100024198.

3.2.2.2 Flood Risk to Development

The site is shown to be in Flood Zone 1 and therefore considered to be at very low flood risk, less than 0.1% annual exceedance probability (AEP) from this source.

3.2.3 Overland Flow

3.2.3.1 Source and Extent

Overland flow is generated by adjacent developments or infrastructure and can be a source of risk in times of extreme rainfall above events their drainage systems are designed for or if they fail or become blocked.

The ground on all sides of the site slopes away from the development site.

3.2.3.2 Flood Risk to Development

As the ground on all sides of the site slopes away from the development site, overland flow is not considered to be a flood risk for this site.

3.2.4 Ground Water Flooding

3.2.4.1 Source and Extent

Topographical data and satellite imagery does not appear to indicate the presence of marshes or ponds within the development site. In addition, the initial site walkover, completed as part of the geotechnical desk study, did not identify any marshes or ponds. The Brighton & Hove City Council Local Development Framework Supplementary Planning Document 16 on Sustainable Drainage note in Figure 8 of the appendices that groundwater levels in this area are between 0.025m and 0.5m below the ground surface⁴.

However, the separately issued Geo-environmental Report reference BDO-MMD-XX-XX-RP-G-0001 notes that groundwater was not encountered in either of the two monitoring boreholes installed at the site, which were installed to depths of 1.50 and 2.00m respectively. Groundwater was encountered in a BGS borehole (historic), located 60m NW of the site, at a depth of 23.80m below ground level (bgl).

3.2.4.2 Flood Risk to Development

It is therefore unclear whether groundwater flooding is an issue on the site due to conflicting information. The monitoring completed on and near the site would appear to indicate that it is unlikely to be an issue, and the steeply sloping nature of the ground profile may also reduce this risk. It is recommended that groundwater monitoring be completed as part of any future ground investigation.

3.2.5 Climate Change

The Environment Agency requires, in accordance with the Government's PPG-TG document, that there should be no increase in the rate of surface water emanating from a newly developed site above that of any previous development. Furthermore, it is the joint aim of the Environment Agency and Local Planning Authorities, to actively encourage a reduction in the discharge of storm water as a condition of Approval for new developments. In addition, all drainage systems should be sized to accommodate the runoff arising from a 1 in 100-year rainfall event, and should include a further allowance to account for the further effects of climate change. Table 3.2 below, shows the anticipated increases in rainfall intensities and river flows with time, and has been reproduced in part from Table 4 of PPG-TG.

Table 3.2: Climate Change Allowances

Туре	Event	2050's	2070's	
Rainfall	1% Central	20%	25%	
	1% Upper End	45%	45%	
Source: Climate change allowances for peak rainfall in England (data dov. uk)				

Source: Climate change allowances for peak rainfall in England (data.gov.uk)

LLFA guidance⁴, recommends in LG10 that a minimum 30% increase in rainfall intensity, and ideally a 40% increase in peak rainfall intensity, should be made as an allowance for climate change. The building has a design life of 50 years, which if constructed this year would be until 2073. Therefore, in light of both Table 4 of PPG-TG and the LLFA guidance, a climate change allowance of 45% has been used in the design.

3.3 Artificial Drainage

3.3.1 Adopted Drainage

3.3.1.1 Source and Extent

Sewer records obtained from Southern Water are included in Appendix B for reference.

These records show that there is a 150mm diameter combined sewer flowing west under Vale Avenue to the south of the development site. The sewer is shown to have connections from the adjacent houses to the east of the development. The manhole south of the site on Vale Avenue

⁴ <u>https://www.brighton-</u> <u>hove.gov.uk/sites/default/files/migrated/article/inline/SPD%2016%20Sustainable%20Drainage%2010%20October%202019.pdf</u>

(ref TQ30092102) is recorded to have a cover level of 68.81mAOD and an invert level of 66.83mAOD. The sewer then flows south / south west down Church Hill.

3.3.1.2 Flood Risk to Development

As Vale Avenue is at a lower level than the development site, no flood risk is anticipated from this source. There is however a risk that the system could become surcharged as the pipe diameter is small, this could in turn affect the discharge of surface water from the proposed development.

3.3.2 Private Drainage System

3.3.2.1 Source and Extent

No existing drainage records or utilities surveys were available at the time of writing of this report. The topographical survey notes a few manholes and inspection chambers on the site, but it is unclear how the existing site is drained and where the existing site drainage discharges to. Notwithstanding this, as the site was previously developed it is likely that there is an existing drainage system present on site. Survey work completed to date shows that there are two connections to the adopted combined manhole (ref TQ30092102) on Vale Avenue, which are believed to be from the site. Further intrusive survey work is required to confirm this connection and the extents of the existing private drainage system on the site connected to it, however this activity is currently restricted due to permissions related to planning consent.

3.3.2.2 Flood Risk to Development

It has not been possible to fully determine how the current site is drained. The redevelopment of the site will result in the majority, if not all, of the existing on-site drainage being removed / abandoned. As a result, there is not considered to be a flood risk from this source.

3.3.3 Highway Drainage

3.3.3.1 Source and Extent

An extract of the highway drainage records is included in Figure 2.2. The records show that the A27 (to the north and the west) has a positive drainage system, with the section of the A27 to the north of the site flowing east, and the section of the A27 to the west of the site flowing south.

The records appear to show a connection from the development site to the highway drainage. However, no utility records or existing onsite drainage records were available at the time of writing to confirm this.

Vale Avenue to the south of the development site does not appear to have many gullies.

Both Vale Avenue and the A27 to the north and west of the development site are at a lower level than the development site.

3.3.3.2 Flood Risk to Development

The site is not considered to be at a flood risk from highway drainage as the site is at a higher level than the roads to the north, west and south of the site. Secondary conveyance from the highway drainage system would be retained within the carriageway extents and channelled away from the development site.

3.3.4 Reservoir Flooding

3.3.4.1 Source and Extent

With reference to the EA's online mapping, data related to the risk of potential reservoir flooding is also provided. This is included in Figure 3.3 and shows that the site is not at risk of reservoir inundation.

Figure 3.3: EA Mapping – Reservoir Flood Risk

Maximum extent of flooding from reservoirs:

🔵 when river levels are normal 🥘 when there is also flooding from rivers 🕁 Location you selected

Source: EA Flood mapping June 2023 © Crown copyright and database rights 2023 OS 100024198.

3.3.4.2 Flood Risk to Development

The site is not at risk of reservoir flooding.

3.3.5 Development Drainage

3.3.5.1 Source and Extent

The current proposed layout for the site is shown in Appendix C.

The total site is approximately 1.58ha in area and includes the following impermeable areas:

- 0.26ha existing buildings
- 0.24ha (approx.) existing hardstanding

For the purpose of this study the remaining area of 1.08ha will be classed as permeable and is predominantly made up of densely vegetated areas and grassland.

The proposed development site is currently planned to include the following impermeable areas:

- 0.40ha proposed delivery office
- 0.92ha proposed hardstanding
- 0.03ha swales (impermeably lined)

For the purpose of this study the remaining area of 0.25ha will be classed as permeable and is proposed to be soft landscaped areas.

A development of this scale is likely to generate relatively large amounts of storm water runoff.

The anticipated unrestricted runoff rate for both the existing and proposed development site is included in Table 3.3. The Lloyd-Davies method has been used (Q=2.78AiC, where A is site area in ha, i is rainfall intensity which for the purpose of this calculation has been taken as 50mm/hr and C is a constant, taken as 1 for this calculation).

Table 3.3: Anticipated Unrestricted Runoff Rate

	Impermeable area (ha)	Anticipated unrestricted runoff rate (I/s)
Existing site	0.50	69.5
Proposed site	1.35	185.6

3.3.5.2 Flood Risk to Development

The development proposals will more than double the impermeable area on the site, this will lead to a notable increase in the runoff rate from the site if left unmitigated.

As the existing drainage routes cannot be proven (at this stage), then the site should be treated as though it were a development on greenfield land. Lead Local Flood Authority (LLFA) guidance⁵ states in item NS2 that 'for greenfield developments the peak runoff rate from the development should never exceed the peak greenfield runoff rate for the same event.' This will have a positive impact on flood risk both on the site and in the local area.

As part of the development of the drainage system, consideration needs to be given to the safe exceedance route.

Given the provision of new attenuation on the site, the reduction in runoff post-development and the provision of safe exceedance routing it is considered that the flood risk from this source is low and can be safely managed for the lifetime of the development. More detail on the strategy to achieve this is included in Section 5.

⁵ <u>https://www.brighton-</u> hove.gov.uk/sites/default/files/migrated/article/inline/SPD%2016%20Sustainable%20Drainage%2010%20October%202019.pdf

4 Sequential Test

As the development site is shown to be wholly within Flood Zone 1 and outside the influence of any other local flood risk elements, in accordance with table 3 of the PPG it is concluded that the development is suitable for this location and the Sequential Test is deemed to have been passed.

5 Flood Risk Mitigation

5.1 Summary

Of the identified flood risks, the residual risk to be addressed at this stage is:

• Runoff generated by the development site.

5.2 Control of Surface Water Run-off

It should be acknowledged that the satisfactory collection, control and discharge of storm water is now a principal planning and design consideration. This is reflected in recently implemented guidance and the National SuDS Standards.

Part H of the Building Regulations 2015 recommends that surface water run-off shall discharge to one of the following, listed in order of priority:

- An adequate soakaway or some other adequate infiltration system, or where that is not reasonably practicable;
- A watercourse, or, where that is not reasonably practicable;
- A surface water sewer.

It is necessary to identify the most appropriate method of controlling and discharging surface water. The design should seek to improve the local run-off profile by using systems that can either attenuate run-off and reduce peak flow rates or positively impact on the existing flood profile.

5.2.1 Infiltration Based Systems

The separately issued Geo-environmental and Geotechnical desk study notes that three soil infiltration tests have been completed but that none of the infiltration tests was completed in the allotted time in accordance with BRE Digest 365. The 2019 Ground Condition Assessment attributed the results to a high proportion of silt content in the underlying materials.

The interpolated infiltration rate from the tests completed in 2019, suggest an infiltration rate in the region of 1×10^{-6} m/s. This rate is likely to be too low to be the primary means of surface water discharge for the development.

It should also be noted that the site is located above a Source Protection Zone 1 aquifer⁶. Infiltration into a Source Protection Zone 1 aquifer would require additional measures to improve the water quality prior to infiltrating into the ground.

As the infiltration rate is poor, and as the site is located above a Source Protection Zone 1 aquifer, infiltration for this site has been discounted.

Therefore, other means of surface water discharge shall be considered as the primary means of disposal of surface water.

5.2.2 Watercourses

Ordnance Survey mapping notes there to be a balancing pond 50m west of the western site boundary (immediately west of the A27) which is thought to exclusively serve the carriageway of the A27. The English Channel is located approximately 5km south of the site. A connection to

⁶ <u>https://www.brighton-</u> hove.gov.uk/sites/default/files/migrated/article/inline/SPD%2016%20Sustainable%20Drainage%2010%20October%202019.pdf</u>

the balancing pond is considered impractical as this would involve culverting under the A27. It's also not known who owns the balancing pond. Therefore, a connection to a watercourse has been discounted.

5.2.3 Adopted Sewers

As infiltration and a connection to a watercourse do not look like viable options for the site, a connection is proposed to the adopted sewer to the south of the development site. The adopted sewer is shown in the Southern Water maps included in Appendix B. The sewer is noted to be 150mm diameter, with the invert level of the manhole south of the site (ref TQ30092102) at 66.83mAOD. A dye test has been completed to confirm if the existing site communicates with the adopted sewer in Vale Avenue. The existing drainage system was found to be blocked, and no dye made it through to the adopted sewer. A more intrusive drainage investigation is required at detailed design stage to confirm the connection. This activity is currently restricted due to permissions related to planning consent.

Providing that the connection can be confirmed, and that the proposed flows from the site are no greater than historic, Southern Water note in their correspondence, received 15th May 2023 (included in Appendix B), that a surface water connection can be made to the combined sewer south of the development site at manhole TQ30092102 on Vale Avenue at a rate of 1.5l/s. Alternatively, Southern Water note that a surface water connection could be made at a rate of 3.0l/s to the surface water sewer on London Road at manhole reference TQ30081950.

In either case, the connection will be subject to a Section 106 approval at the appropriate time.

The LLFA would also need to approve the connection and flow rate.

It should also be noted that there may be a National Highways drain to the northwest of the site, as shown in Figure 2.2. However, there is a chance this may not be a real connection, and the levels are such that a gravity connection would not be possible to drain the entirety of the site. In addition, the LLFA notes that National Highways (formerly Highways England) specifically state that "no water run off that may arise due to any change of use will be accepted into the highway drainage systems, and there shall be no new connections into those systems from third party development and drainage systems".

Where there is already an existing third-party connection the right for connection may be allowed to continue providing that the input of the contributing catchment to the connection remains unaltered". In light of the guidance from National Highways, a connection to the highway drainage would not be accepted.

5.3 Allowable Site Discharge

As noted in section 5.2.3, historic connections from the site need to be confirmed to Southern Water assets, and providing the proposed discharge rate is no greater than historic rates, Southern Water will allow a discharge of 1.5l/s to the manhole on Vale Avenue (ref TQ30092102) to the south of the site. Alternatively, Southern Water may also allow a surface water discharge rate at 3.0l/s to the surface water sewer on London Road (manhole ref TQ30081950).

A connection to the manhole on Vale Avenue is likely to be more straightforward to connect to due to the proximity to the site, in comparison to a connection to the manhole on London Road which is approximately 300m away from the site.

A flow rate of 1.5l/s is likely to require small orifice diameters (<75mm) to restrict the flow. Systems should pass through permeable paving (impermeably lined), or other robust debris management processes before passing through the orifice, to reduce the risk of blockage. In addition, safe exceedance routes should be incorporated into the site layout/drainage design.

5.4 Site Attenuation

The provision of suitable attenuation on-site to mitigate flood risk resulting from the proposed development will be a key factor in the evolution of the site development layout.

The provision of large volumes of attenuation, as is likely in this case, can be achieved by a number of methods; however, not all systems can be assessed in direct comparison.

One of the aims of PPG is to provide not only flood risk mitigation but also maximise additional gains such as improvements in runoff quality and provision of amenity and bio-diversity. Systems incorporating these features are often termed Sustainable Drainage Systems (SuDS) and it is a requirement of PPG that these are considered as the primary means of collection, control and disposal for storm water as close to source as possible.

The volume of attenuation required for the development may be estimated using design software. The proposed impermeable areas taken from the current layout may be used to evaluate the runoff response of the site during varying rainfall events.

Attenuation has been provided using a combination of impermeably lined permeable paving and impermeably lined geocellular storage using orifice and vortex flow controls. Two options are provided in the below table, restricting flows to 3.0l/s and 1.5l/s as noted in section 5.3.

More detail of the surface water drainage strategy is included in Section 5.8, and in the drainage masterplan included in Appendix D.

	Impermeable Area	Anticipated Unrestricted Run-off	Flow Restriction	Estimated Attenuation Volume (1 in 100 + 45% CC
	ha	ls ⁻¹	ls ⁻¹	m ³
Whole Site (drained by private system)	1.31	182.1	3.0	1620
Whole Site (drained by private system)	-		1.5	2100

The software uses the FSR characteristics of M5-60 = 19.9 mm and ratio R = 0.342.

Source: Microdrainage Calculation

Undeveloped areas within the site boundary have not been considered as it is assumed that drainage of these areas will be as existing.

5.5 Sustainable Drainage Systems (SuDS) and Water Quality

The most appropriate attenuation system should satisfy four main characteristics:

- Provide the required volume of storage to satisfy water quantity requirements
- Provide the required level of treatment to satisfy water quality requirement
- Maximise biodiversity
- Provide local amenity

A summary of the various types of attenuation is included below.

The application of the 'SuDS Manual' CIRIA report C753 for new developments requires that the runoff from sites is not only restricted to meet the pre-development runoff characteristics but

also that SuDS systems are utilised to improve the quality of the runoff prior to outfall to watercourses.

The manual and EA guidance applies a sustainability hierarchy to the various types of SuDS systems, this is summarised in Table 5.1.

Table 5.1: SuDS Hierarchy

	SuDS Technique	Flood Reduction	Pollution Reduction	Landscape & Wildlife Benefit
Most Sustainable	Living Roofs	\checkmark	\checkmark	\checkmark
	Basins and Ponds - Constructed Wetlands - Balancing Ponds - Detention Basins - Retention Ponds	V	V	\checkmark
	Filter strips and swales - Infiltration devices - Soakaways - Infiltration trenches and basins	\checkmark	\checkmark	\checkmark
	Permeable surfaces and filter drains - Gravelled areas - Solid paving blocks - Porous paviours	\checkmark	\checkmark	
Least Sustainable	Tanked Systems - Oversized pipes/ tanks - Cellular Storage	\checkmark		

Source: CIRIA SuDS Manual C753

Systems at the top of the hierarchy provide a combination of attenuation, treatment and ecology and are deemed the most sustainable options. There are always specific scenarios where some systems are more suitable than others and at this stage it is not possible to guide the development towards a particular strategy. However, included below are summaries of some of the main types of SuDS systems that may be applied to the development outlining the main benefits and constraints to their application.

5.5.1 Living or Green Roofs

Larger areas of roof may be designated as living or green roofs to provide both point water treatment and significant enhancement of local biodiversity. The assessed gains are such that these systems are the preferred EA option for the provision of SuDS.

If considered at the outset of the design of a unit, a green roof can be integrated within the provision of a roof terrace area to multiply the benefits, alternatively, a maintained roof can be installed that may require specialised access.

There are numerous propriety systems available on the market to suit various specific applications and it is recommended that if these systems are being considered discussion with several suppliers is instigated as soon as possible.

Green roofs are proposed on the smaller northern and southern roofs. The green roofs would improve water quality, enhance biodiversity and provide amenity benefits. They will also provide interception for small rainfall events (typically the first 5mm of rainfall would be intercepted).

5.5.2 Ponds and Basins

The nature of these systems is such that the run-off from the development can be treated by biological action and stilling to significantly improve the quality of water discharged from the system.

Basins also provide large areas of open space that can be developed for recreational uses or as new habitat for wildlife.

Both systems do, however, take up developable land and have residual maintenance and liability issues attached to their implementation.

The steeply sloping nature of the site, and proposed layout would make ponds and basins difficult to economically incorporate on the site and have therefore been discounted.

5.5.3 Filter Strips and Swales

Often used adjacent to roads and footpaths, swales and filter strips can be used to collect water directly from linear features, percolate some of the flow, attenuate and then discharge the flow to either a traditional system or a secondary SuDS device.

The use of these systems is more suited to linear applications such as roads as the typical cross section is relatively small and longer runs are required to provide attenuation volume.

Filter strips will be smaller in plan area than a swale although the swale can be landscaped to be incorporated into the verge of the carriageway, combining two functions.

Land take can be relatively small in comparison to other systems and both types perform well in improving water quality. They are also ideally suited for disposal of water via secondary infiltration, however as the site is located above a SPZ1 aquifer, secondary infiltration is not suitable and such swales will need to be lined with an impermeable membrane.

Impermeably lined swales are proposed immediately west and east of the building and along the eastern site boundary. The use of this system would have significant biodiversity and habitat creation benefits, as well as providing improvements to water quality.

5.5.4 Rain Gardens

Rain gardens are designed to mimic the natural water retention of undeveloped land and reduce the volume of rainwater running off into drains from impervious areas. They also have the added benefit that they are able to treat low levels of pollution. In construction, they are shallow depressions with absorbent, yet free draining soil which are populated with plants that are able to withstand temporary flooding conditions.

This type of system not only has the advantage of meeting the requirements of SuDS but could also provide additional educational benefits for certain sites.

A rain garden would be difficult to incorporate on the site, due to the steeply sloping nature of the site. In addition, a rain garden would not be suitable as the site is located above a SPZ1 aquifer and therefore systems should not infiltrate into the ground.

5.5.5 Permeable Paving

Larger areas of block paved hardstanding can easily be converted to provide significant volumes of storage. These systems also encourage biological treatment of flow and extraction of oils and heavy metals from the run-off.

Land take is reduced as storage is located under car parks and access roads. However, maintenance is potentially a long-term issue and the possibility of the paving being damaged,

dug up and not properly reinstated or not regularly swept could lead to compromising the future capacity of the system.

This system will negate the need for a separate collection system such as kerbs and gullies. It will also assist in reducing the flood profile of the site by significantly attenuating the run-off from the development within the sub-base material.

There is no specific amenity provided by the system other than enabling other areas to be utilised for development rather than potentially sterilizing area with an easement for a sewer or stand-off for a basin.

These systems may be incorporated into normal car-parking areas and driveways but may not be suitable for areas accessed by larger vehicles. These systems can also be used in conjunction with geo-cellular attenuation where attenuation volume requirements are large.

Much of the site area is proposed to be taken up with car parking areas. Permeable paving has therefore been proposed in the majority of the car parking areas. All the permeable paving is proposed to be lined with an impermeable membrane to prevent infiltration, due to the site being located above a SPZ1 aquifer. Consideration has been given to the anticipated loadings as permeable pavements may not be suitable in areas with high vehicular loading, and therefore permeable paving has not been included in areas with high vehicular loading. The topography of the site is quite steep, and therefore recommended that a permeable paving system should be connected to flow controls at different levels, with the base of the permeable paving laid flat so as to utilise a greater proportion of sub-base for attenuation.

5.5.6 Cellular Storage

Large volumes of storage can be provided under grassed and lightly trafficked areas by using proprietary geo-cellular systems. This will maximise the developable area of the site.

There are no specific mechanisms within the system designed to treat flow, but extended detention times will allow sedimentation reducing the suspended solids within the discharge.

There is no creation of amenity by the installation of these types of systems, indeed by maintaining access to the system small areas may need to be reserved.

If the developable footprint is constrained then these systems may be advantageous, however, to ensure suitability it is recommended that the use of these systems is discussed with the maintaining body as they are not always preferred.

The installation of cellular storage requires significant excavation and therefore where space is not a critical issue other forms of attenuation should be considered. These systems will also require occasional maintenance to remove sediments which can be difficult depending on the design and access arrangements.

Cellular storage has been proposed towards the southern boundaries of the site to provide additional volumes of attenuation.

5.5.7 Tank or Culvert Storage

Hard engineered tank storage systems have traditionally been used for attenuation structures for the past decade and are often specified where large volumes of storage are required (>200m³) and available space is an issue.

These systems have no inherent water treatment properties except potential sedimentation of the attenuated flow and offer no additional amenity benefits. In some cases, the easement to the tank or culvert is such that a significant portion of land area is sterilized from development as are certain types of landscape planting.

20

There are also significant costs associated with these systems in production, transportation, and installation. However, once installed the long-term maintenance requirement of the system is relatively low.

With a proven record of successful installation, tanks and culverts are regularly adopted by water authorities across the country, albeit with a large associated easement that will sterilise that portion of the site. It should be noted however, that these systems will require occasional maintenance to remove sediments which can be difficult depending on the design and access arrangements.

As systems further up the SuDS hierarchy should be viable for this site, tank or culvert storage has been discounted at this stage.

5.5.8 Surface Storage

The use of roads, public areas and even landscaped areas as additional storage for an extreme rainfall event is becoming a widely accepted form of attenuation.

Water spilling from the drainage systems can be collected via roads and kerbs and channelled to lower lying areas where it would be stored until the capacity in the existing system returns.

These systems have the advantage of requiring little additional infrastructure merely detailing of the proposed roads and grassed areas.

As these systems will only by used in extreme events when the adopted drainage system is exceeded (>1 in 30 years), they provide a very efficient way of catering for these events rather than providing permanent capacity.

There is no inherent water treatment capability in this system nor any particular increase in amenity, however, the costs associated with this provision are relatively small.

Surface storage would be difficult to incorporate on the site due to the steeply sloping nature of the development. Significant adjustments to the levels would be required for this to be a viable option on any sort of scale.

5.5.9 Oversized Pipework

It is often possible to provide the required volume of storage within the existing collection pipework of the proposed system. This may be incorporated by using oversized pipework designed to act as inline storage.

As the diameter of larger pipes readily available is limited the applicability of these types of systems is more suited to <200m³ of attenuation. Above this volume, the length of pipe required is excessive and difficult to suitably fit into a normal site layout.

There is no intrinsic amenity provided by the use of this system neither is there any specific level of run-off treatment over and above that of a standard pipe and gully system.

However, due to their traditional nature, the adoption of these types of systems by water companies is straightforward and does not require any specialist input. The pipes are generally available direct from suppliers with little or no lead time and the satisfactory long term performance of these systems is well documented.

As the site is steeply sloping oversized pipework would not be an efficient method for surface water storage, with this system unlikely to be suitable to provide the required volume of attenuation. In addition, there are other SuDS methods that are higher up the SuDS hierarchy, as such these types of systems have been discounted.

5.6 **Runoff Quality**

Receiving watercourses are sensitive to water quality in varying degrees. Discharges to ground and watercourses will require more treatment than to a public sewer.

In this case the site is proposed to discharge to the Southern Water combined sewer.

Therefore, the receiving watercourse is classified as having a low sensitivity and the runoff as high pollutant hazard potential based on the proposed land use.

Table 5.2: Summary of Pollution Index Table from SuDS Manual

Land use	Pollution Hazard level	Total Suspend ed Solids (TSS)	Metals	Hydro- carbons
Commercial yard and delivery areas, non- residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	0.7	0.6	0.7
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways	High	0.8	0.8	0.9
Source: SuDS Manual C753 Table 26.2				

SuDS Manual C753 Table 26.2

Total SuDS Mitigation index = mitigation index₁ + 0.5 (mitigation index₂)

Land use TSS Metals Hydrocarbons Filter strip 0.4 0.4 0.5 Filter drain 0.4 0.4 0.4 **Bioretention system** 0.8 0.8 0.8 Impermeably lined 0.7 0.6 0.7 permeable pavement Detention basin 0.5 0.5 0.6 Pond 0.7 0.7 0.5 Wetland 0.8 0.8 0.8 Proprietary treatment These must demonstrate that they can address each of the containment types to acceptable levels for frequent events up to approximately the 1 in 1 year return period system event, for inflow concentrations relevant to the contributing drainage area.

Table 5.3: Indicative SuDS mitigation indices for discharges to surface waters

Source: SuDS Manual C753 Table 26.3

The above tables note that the impermeably lined permeable paving on its own would be able to provide the required level of treatment for surface water runoff for all but the HGV access area of the site. Additional measures are also proposed, including impermeably lined swales and green roofs.

The HGV access area is proposed to have a separate drainage collection system to the rest of the site due to the higher pollution hazard level. The surface water runoff from this area is proposed to pass through a full retention interceptor, before discharging into the attenuation system.

5.7 SuDS Summary

The application of a SuDS based system needs to be considered as the primary measures for dealing with surface water for any proposals, these systems are the only ones that provide the required level of treatment.

The natural topography and nature of the site is such that a combination of SuDS features are proposed to provide a wealth of SuDS benefits. These include impermeably lined permeable paving in the car parking areas, green roofs, impermeably lined swales adjacent to the building and to the east of the site boundary, as well as geocellular storage to provide additional attenuation.

The HGV access area has an increased pollution hazard level and is proposed to be drained by a separate drainage collection system, with surface water passing through a full retention interceptor.

The Ground investigation indicates that infiltration is not viable for the primary means of surface water discharge for the site. In addition, as the site is located above a Source Protection Zone 1 aquifer it is proposed that infiltration is not included in the discharge strategy and that all SuDS features will be lined to prevent infiltration on the site.

This type of system described above will not only provide the required attenuation for the site but would also enable the features to be integrated with the existing natural habitat and also provide water quality improvements to the flow prior to discharge.

5.8 **Design Example**

In order to give some idea of the size of attenuation features that may be required and thus begin the process of integration, a preliminary drainage design has been completed and is included in Appendix D based upon the assumptions discussed previously. The calculations for which are included in Appendix E.

The design makes use of green roofs, permeable paving, geo-cellular storage and swales. Permeable paving, geo-cellular storage and swales are to be lined with an impermeable membrane to ensure runoff from impermeable areas on the development site does not infiltrate into the ground. Multiple flow controls have been utilised due to the steeply sloping nature of the site. With source control measures utilised where possible, including green roofs, swales and permeable paving. The design, illustrated in Appendix D, limits the peak flow rate using a series of orifice plates and vortex flow controls to limit the flow to 1.5l/s in the critical 1 in 100yr + 45% Climate Change event, before discharging to the adopted combined sewer under Vale Avenue. Restricting flows to 1.5l/s requires a total attenuation volume of approximately 2100m³. An alternative option is to limit flows to 3.0l/s for the 1 in 100yr + 45 Climate Change event, discharging to the sewer under London Road to the south (approximately 300m away from the site), this option requires approximately 1620m³ of attenuation.

Pollution is managed through the use of impermeably lined permeable paving and impermeably lined swales for all but the HGV area of the site. Runoff from the HGV area is to be drained using a separate collection system and is proposed to pass through a full retention interceptor.

The levels of the access road along the southern boundary are such that a gravity connection to the adopted sewer on Vale Avenue is not possible. As such, this area is proposed to be pumped to the geocellular storage upstream of the final flow control. The area to the south of the site is designed to pass through a full retention interceptor outfalling to geocellular storage upstream of the pump. The geocellular storage has a dual purpose, both to reduce the pump rate required and also to act as secondary storage in the event of pump failure.

5.9 Exceedance Routing

The performance of the system during extreme events (>1 in 100 years) should also be considered at this stage.

The routing of potential storm water run-off, should the capacity of the proposed site drainage system be exceeded, needs to be built into the layout of the site such that the residual risk of flooding from this element can be easily mitigated.

Due to the steeply sloping nature of the site, surface storage of flood water is difficult to achieve, as such the system has been designed to the 1 in 100yr + 45% Climate Change event. In the event that the drainage system is exceeded, flood water would run down the access road off the site onto Vale Avenue to the south. Available level information would indicate that the water would head west along Vale Avenue. Runoff would likely be picked up in the highway drainage system if there is spare capacity.

5.10 Foul Drainage

The proposed development includes toilets, cleaning and kitchen facilities inside the new building which will require foul drainage. Externally, the proposals include an oil, air and water unit and jet wash station which will require foul drainage.

The drainage masterplan included in Appendix D shows a provisional foul drainage layout that discharges to the combined sewer on Vale Avenue to the south of the development site. A predevelopment enquiry has been completed for the development, and Sothern Water have confirmed that a gravity connection to the adopted assets in Vale Avenue is permissible.

Trade effluent discharges may be required from the site and will need to be agreed with the wholesale provider in due course.

5.11 Flood Resilience and Resistance

Notwithstanding the flood classification of the site, the development of any new building should consider measures that will make the development more flood resilient in the event of an unforeseen or ultra-extreme flood scenario.

If considered at the genesis of the design process, relatively simple and inexpensive measures can be taken to enhance the flood resilience of any building. These include things such as first floor down power and data, locating meters and distribution equipment at high-level and the use of solid or drained floor slabs and resilient finishes such as tiles screed on ground floors.

More information is available in the DEFRA publication 'Improving the flood performance of new buildings: flood resilient construction'⁷.

5.12 Adoption and Maintenance

The system is to remain private upstream of the demarcation chamber at the south of the site. The demarcation chamber and the connection to the Southern Water assets should be adopted by Southern Water.

Maintenance of all the system, bar those adopted by Southern Water, is the responsibility of Royal Mail.

To assist in the preparation of the operation and maintenance manual of these systems which will be issued at the practical completion stage of the scheme, a typical inspection and maintenance regime has been included for the proposed SuDS features in this report. This

⁷ <u>https://www.gov.uk/government/publications/flood-resilient-construction-of-new-buildings</u>

maintenance regime should be reviewed and updated as the design progresses and after the systems have been constructed and tested on site. An example maintenance regime is included in Appendix F.

6 Conclusions and Recommendations

The report concludes that the existing site is located in an area of very low fluvial flood risk and can be considered to be in Flood Zone 1.

Pluvial flood risk on site is not noted to be an issue, according to Environment Agency mapping. The Less Vulnerable development type is therefore appropriate for this site.

The residual flood risk associated with the development is the management of surface water from the development site itself.

The report concludes that this risk can be mitigated for the lifetime of the development.

It is unlikely that infiltration will be a viable means of primary surface water discharge on this site, based on soakaway test results noted in the geo-environmental and geotechnical desk study.

It should also be noted that the site is located above a Source Protection Zone 1 aquifer. As the infiltration rate is poor, and as the site is located above a Source Protection Zone 1 aquifer, infiltration for this site has been discounted and all proposed SuDS features are to be lined with an impermeable membrane to prevent infiltration.

A dye test has been completed to attempt to confirm if the existing site communicates with the adopted sewer in Vale Avenue. The existing drainage system was blocked, and no dye made it through to the adopted sewer. A more intrusive drainage investigation is required at detailed design stage to confirm the connection. This activity is currently restricted due to permissions related to planning consent. If a connection from the site can be proven and providing the proposed discharge rate is lower than the historic rate, Southern Water have confirmed that a surface water discharge rate of 1.5l/s is permissible to the manhole in Vale Avenue (ref TQ30092102), alternatively a connection is also permissible at a surface water discharge rate of 3.0l/s to the manhole on London Road (ref TQ30081950).

The development will result in an increase in impermeable area. A SuDS based system has been proposed using a number of SuDS features, and both orifice and vortex flow controls to limit flows during the critical 1 in 100yr + 45% Climate Change event to 1.5l/s if connecting to the manhole in Vale Avenue (ref TQ30092102) or to 3.0l/s if connecting to the manhole on London Road (ref TQ30081950). The proposed flow restrictions are in accordance with the correspondence received to date from Southern Water (see Appendix B). The proposed point of discharge will require an S106 application to Southern Water and approval from the LLFA.

It is proposed that runoff from the proposed adopted highway at the site entrance and the proposed adopted footpath in the south falls towards the carriageway and is drained by the existing highway drainage system.

The drainage design included in Appendix D, includes green roofs, swales, permeable paving and geocellular storage. This system will provide water quality, biodiversity and amenity benefits in line with the requirements of the SuDS manual. Permeable paving, geo-cellular storage and swales are to be lined with an impermeable membrane to ensure runoff from impermeable areas on the development site does not infiltrate into the ground.

The HGV areas are to drain using a separate collection system to the rest of the site and should pass through a full retention interceptor to provide the required level of treatment.

Foul drainage for the scheme should discharge via gravity to the combined sewer on Vale Avenue, which Southern Water have confirmed is permissible.

The system is to remain private upstream of the demarcation chamber at the south of the site. The demarcation chamber and the connection to the Southern Water assets should be adopted by Southern Water. Maintenance of the private drainage system is the responsibility of Royal Mail. An example maintenance regime is included in Appendix F.

A. Topographical Data

1. UNDERGROUND DRAINAGE INFORMATION HAS BEEN MEASURED FROM SURFACE INSPECTION ONLY AND SHOULD BE CONFIRMED BY SPECIALISTS IF CRITICAL.

2. TREE AND HEDGE SPECIES HAVE BEEN IDENTIFIED AS ACCURATELY AS POSSIBLE BUT SHOULD BE CONFIRMED BY SPECIALISTS IF CRITICAL.

3. SURVEY GRID & LEVELS RELATED TO ORDNANCE SURVEY NATIONAL GRID. OBTAINED THROUGH REAL TIME GPS OBSERVATIONS.

530350E

Station 11 12	Easting 530309.268 530288.407 530313.196	Northing 109216.708 109262.296	Level 70.856
11	530309.268 530288.407 530313.196	109216.708 109262.296	70.856
12	530288.407 530313.196	109262.296	
12	530313.196		73.818
15		109268.270	74.347
14	530280.021	109287.681	75.390
15	530267.347	109320.731	77.203
16	530246.004	109311.482	77.214
17	530219.245	109295.120	75.631
18	530233.489	109265.306	74.702
19	530244.586	109244.395	73.664
110	530257.709	109244.749	73.435
l11	530277.717	109251.744	73.358
I10A	530265.688	109224.806	72.273
14A	530272.122	109302.977	76.275
I4B	530247.122	109288.979	75.284
196	530321.426	109175.871	68.621
197	530359.262	109198.042	69.524
II100	530292.209	109177.421	68.122

С	ROAD LEVELS AMENDED	IMS	DR	30.08.18
В	ADDITION OF VALE AVENUE AND EXTRA BOUNDARY DETAIL	IMS	DR	23.08.18
Α	ORIGINAL DRAWING ISSUE	IMS	JL	17.8.18
Rev	Description	Ву	Ckd	Date

Noble House, Capital Drive, Linford Wood, Milton Keynes, MK14 6QP T: 01908 669 898 E: rpsmks@rpsgroup.com F: 01908 302 625

Client

Project PATCHAM COURT FARM, VALE AVENUE, BRIGHTON, BN1 8YF

Title TOPOGRAPHICAL SURVEY

Status FINAL Project Leader AHP

Project Number Originator - Zone - Level - Type - Role - Drawing Number

Document Number

JKK10124**-** 01

Scale 1:200 @A0 Drawn By IMS

Date Created 17.08.2018 Checked by

С

Revision Suitability

rpsgroup.com/uk

B. Southern Water Maps and Correspondence

	Liquid Type	Cover Level	Invert Level	Depth to Invert
1002	C	62.27 69.18	60.63 67.94	
2102	C	68.81	66.83	
9001	C	50.02	47.19	
1001	F	58.43 58.77	55.23 55.57	
3101	F	59.59	58.65	
3102	F	59.60 59.83	58.70 58.89	
4005	F	59.83 56.91	56.07	
4006	F	57.00	56.18	
4011 4012	F	56.23 56.26	54.97 55.06	
4012	F	57.42	56.54	
4019	F	56.38	55.37	
4102 4103	F	56.51 56.68	56.01 56.28	
9101	F	56.02	53.04	

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
	,			
		1		

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert

Liquid Type	Cover Level	Invert Level	Depth to Invert		Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Inve
				-					
				_					
				-					
				_					
 				-					
				-					
 				-					
				-					
 				-					
				-					
				_					
				-					
				-					
				-					
				_					
				-					
 				_					
				-					
				-					
				_					
				-					
				_					
				-					

Manhole Reference Li	iquid Type	Cover Level	Invert Level	Depth to Invert

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
	1			

SOUTHERN WATER

From: Southern Water Planning <<u>SouthernWaterPlanning@southernwater.co.uk</u>> Sent: 15 May 2023 13:04 To: Andrew Precious <<u>Andrew.Precious@mottmac.com</u>> Subject: RE: 2023 0123 - DSA000018192

Good Afternoon Andrew,

I hope you are well? It has been established that;

- The enquiry has been reassessed to determine the capacity for the surface flow at manhole reference TQ30081950.
- □. The assessment indicates that there is sufficient capacity in the local surface network to accommodate a surface flow no greater than 3 l/s at manhole reference TQ30081950.
- The enquiry has been assessed to determine the capacity for the surface flow at manhole reference TQ30092102.
- □. The assessment indicates that there is sufficient capacity in the local surface network to accommodate a surface flow no greater than 1.5 l/s at manhole reference TQ30092102.

Obviously, we need for you to prove the historic surface water connection for us to consider the surface water connection for the development and for the new flows to be no greater than historic.

Kind Regards

C. Proposed Development Layout

Key			
76.010	Red Line Boundary Proposed Spot Levels	X	Proposed Log A log pile is cre provide an eco wildlife, includi
			invertebrates
▲ <u>1:20</u>	Proposed Gradients		Proposed Wall
Ø	Proposed Dropped Kerbs & Proposed Potential Crossings		Proposed Car Permeable ver will be coordina
Soft Lands	scape		with the attenu
	Exisiting trees to be retained		Proposed EV E Permeable veh charger installe engineer to en
	Indirative Poet Protection Area		Droposed.
	Proposed Fruit Tree Typical species include:		Grasscrete with coordinated with attenuation stra
	Malus sylvestris Prunus avium sunburst Prunus cerasifera Proposed Native Species Trees (Standard Trees)		Proposed Visit Grasscrete wit Materials will b they align with
	Typical evergreen species include: Corylus avellana Ilex aquifolia Pinus sylvestris Prunus avium Quercus ilex		Proposed Prim Heavy vehicula 7.5 toner gross coordinated wi attenuation stra
(B)	Taxus baccata Proposed Specimens		Proposed Pede
ø	Typical evergreen species include: Juniperus communis Sambucus nigra Viburnum opulus		Permeable per coordinated wi attenuation stra
	Proposed Native Hedge		Refer to MEP I
	maintained at 1,800mm high. To be planted with 300mm depth topsoil & 300mm loosened sub-soil and 75mm depth mulch.		Proposed Pede Impermeable p
	Rosa pimpinellifolia Taxus baccata Ulex europaeus Ulex gallii		Proposed Zebr White matt finis
	Proposed Native Species Shrub Plantings	Poundam	Treatment
	Calluna vulgaris Erica herbacea		Proposed Palis
	Helianthemum nummularium Rosa canina Salix reticulata Vaccinium myrtillus		steel and has to help prevent colours.
	Proposed Swale Planting Wildflower Meadow Emorsgate Seeds EG8 meadow grass mixture for wet soils or similar, to be planted with 150mm depth topsoil & 150mm loosened sub-soil. To be managed as meadow. Typical species include: Agrostic Capillaris	<u> </u>	Proposed Sing Pedestrian pall rolled steel and coating to help black powder of
	Alopecurus Pratensis 'Aureovariegatus' Anthoxanthum Odoratum Briza Media 'Limouzi' Cynosurus Cristatus Deschampsia Cespitosa		Proposed Doul Double leaf pa cold rolled stee zinc coating to in black powde
	Festuca Rubra Festuca Pratensis Rubra Salvia Pratensis 'Indigo'	DD	Proposed Gree Refer to WSP information. Pla
	Proposed Species Rich Wildflower Meadow Emorsgate Seeds EM2 - standard general-purpose meadow mixture or similar, to be planted with 150mm depth topsoil & 150mm loosened sub-soil. To be managed as meadow.	DD	Proposed Gree Refer to WSP information
	Typical species include: Betonia officinais	Street Fur	niture
	Centaurea nigra Daucus carota Filipendula ulmaria		Proposed Cycl
	Galium verum Leucanthemum vulgare Lotus corniculatus Malva moschata Plantago lanceolata Primula veris		spaces double 4100mm width
	Ranunculus acris Vicia cracca Agrostis capillaris Cynosurus cristatus Festuca rubra Poa pratensis		
	Proposed Low Sunny Planting Mix Low maintenance, low level planting mix. To be planted with 300mm Depth Topsoil & 300mm loosened sub-soil and		
	75mm Depth Mulch. Typical species include: Bergenia 'Silberlicht' Convolvulus cneorum Geranium x cantabrigiense Hebe 'Margret' Scilla verna		
	Proposed Green Roofing System Extensive green roofs are an ecological alternative to conventional surface protection Achillea Millefolium 'McVities' Armeria Maritima_ Echium vulgare		
	Primula veris Origanum vulgare Saxifraga Granulate Scabiosa succisa Viola tricolor		
Ecological	Enhancement Proposed Bird boxes Bird Nest comprising of Schwegler 2B,Schwegler starling box Schwegler 2H. Treecreeper box Woodpocker box		
	Proposed Bat boxes Bat Boxes, comprising of Schwegler 1FF and Schwegler 2FN or similar		
	<u>Proposed Bee boxes</u> Open mesh floor with entrance block and removable plastic 'varroa' board brood box with frames and wax foundation 2 x		

Log Pile is created from trees which are being removed to n ecological habitat. It prefects for a wide range of ncluding moss, fungi and insects and other

Walls

<u>I Car Parks Routes</u> le vehicle block paving in a heather finish, materials ordinated with the engineer to ensure they align attenuation strategy proposed.

d EV Electric Car Parking Space le vehicle block paving in a heather finish with EV stalled. Materials will be coordinated with the o ensure they align with the attenuation strategy

Visitor Car Park Spaces ete with pre-cast blocks, materials will be ted with the engineer to ensure they align with the n strategy proposed.

<u>I Visitor EV Electric Car Park Spaces</u> te with pre-cast blocks with EV charger installed. will be coordinated with the engineer to ensure with the attenuation strategy proposed.

Primary Vehicle Access Route

hicular non-permeable base up to approximately gross vehicle weight in grey finish, materials will be ed with the engineer to ensure they align with the n strategy proposed.

Pedestrian Crossing Routes e pedestrian grade asphalt, materials will be ed with the engineer to ensure they align with the n strategy proposed.

Emergency Generator IEP Engineer drawing for further information

<u>l Pedestrian Area</u> able paving slabs, 400mm x 400mm concrete flag a buff finish.

d Zebra Crossing Road Paint att finish meaning to provide safe and clear

ion for pedestrians crossings need.

Palisade Fencing

security fencing is manufactured from cold rolled has been galvanised with a protective zinc coating event rust with 2.4m high in black powder coating

<u>I Single Security Gate</u> In palisadesecuirty gate is manufactured from cold el and has been galvanised with a protective zinc help prevent rust with 2.4m high x 1.2m wide in der coating colours.

Double Security Gate

af palisade secuirty gate is manufactured from steel and has been galvanised with a protective ng to help prevent rust with 2.4m high x 2.0m wide owder coating colours.

I Green Acoustic Fence_ NSP Acoustics drawing and report for further on. Planting details to be agreed.

<u>Green Acoustic Fence</u> VSP Acoustics drawing and report for further

<u>l Cycle Shelter</u> e storage accommodates 40 bikes utilising 2 x 20 ouble stack cycle rack - the size of these is: width x 2100mm deep.

ΣΣ

60

Check all dimensions on site. Do not scale from this drawing Report any discrepancies and omissions to HLM Architects This Drawing is Copyright ©

Refer to BDO-HLM-01-00-DR-L-0006 Landscape General Arragement - Southern Boundary

P10	ISSUE FOR EAIA		12.05.23	SL	AM
P09	ISSUE FOR COMMENT		28.04.23	SL	AM
P08	DETAILED LANDSCAPE PACK FOR PLA	NNING	04.11.22	SL	AM
P07	ISSUED FOR PLANNING		05.07.22	SL	OJ
P06	ISSUED FOR PLANNING		01.07.22	SL	NI
P05	ISSUED FOR PLANNING		30.06.22	SL	NI
P04	ISSUED FOR COMMENT		23.06.22	SL	NI
P03	ISSUED FOR COMMENT		10.06.22	SL	NI
P02	ISSUED FOR CO-ORDINATION		22.12.21	SL	NI
P01	DRAFT ISSUE		29.10.21	SL	NI
Rev	Description		Date	Ву	Chk
Rev	isions			Suita	bility
Proj	ect	S0 WORK	N PRC	GRE	SS

RMG Brighton MPU

Client

Royal Mail Group

Title

Landscape General Arrangement Plan

Drawing No.	Revision		
BDO-HLM-01	P10		
Scale @ A1	Drawn		
1:500	SL		
Date	Checked		
29/10/21	NI		

© HLM Architects 2nd Floor Ailsa Court 121 West Regent Street Glasgow G2 2SD

www.hlmarchitects.com T. +44 (0) 141 226 8320 F. +44 (0) 141 226 8350 glasgow@hlmarchitects.com

D. Indicative Drainage Masterplan

© Mott MacDonald Limited

This document is issued for the party which commissioned it and for specific purposes connected with the captioned project only. It should not be relied upon by any other party or used for any other purpose. We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties. C:\Users\lea75161\Mott MacDonald\B RMF Brighton DO - Develop\D Drainage Engineer\DR Drawing Renditions\RMF Brighton Drainage Masterplan P05draft4.dwg May 30, 2023 - 10:14AM LEA75161

0 25m 1:500

Note	S This dra	wing is to be	read in co	niuncti	on with all relev	vant drawing	ne	
2.	Do not s	cale from this	drawing.			anturawing	y s.	
3. 4	All meas	surements are	e in metre	es (m), l	unless noted ot	nerwise	unloss not	od
4.	otherwis	e.	ii iiieues	above		r (IIIAOD) u		eu
5.	All layou colour.	its are prelimi	nary only	and su	bject to review	and are to l	be printed	d in
6.	 Proposed drainage designed in accordance with Building Regulations Part H and Sewerage Sector Guidance (SSG) Appendix C. 							
7.	Details o	of Southern W	/ater Sew	er base	ed on information	n given on	Southern	Water
8.	mapping Pipe bec	J. dding to be Τι	/pe 'S' un	less pip	e cover is less	than 1.2m;	whereup	on
0		e surround sh	all be use	ed.	anto to he divido	, L	·	
9. 10.	Offsite d Providing propose permit a Alternation Lond	n buried unde lischarge rate g an existing d discharge r discharge of vely, Souther on Road. The ref TO30091	and loca connection ate is no (1.5l/s to r n Water p design s	tion to t on can t greater manhole bermit a shown is	ents to be 1V:40 be agreed with be proven from than the histori e ref TQ300910 connection to s for the 1.5l/s source	n. Southern W the site, and c rate, Sout 2 on Vale A manhole re surface wate	/ater and d providir thern Wai Avenue. f TQ3008 er dischal	LLFA. ng the ter 1950 rge to
11.	Site leve	els likely and l	ayout like	ely to ch	ange as desigr	n develops.	Drainage	
12.	drawing Permeal imperme	will need to b ble paving, sv eable membra	vales and ane to ens	d to sui geocel sure rur	t. Iular storage to off from imperr	be lined wi neable area	th an as on the	
	develop	ment site doe	s not infili	trate int	o the ground.			
Keyi	to symbo	Existing	Adopted	Combi	ned Water Sew	or		
>_	>>>	– Propose	ed Surface	e Water		CI		
		Propose	ed Perfora	ated Pip	e			
<u> </u>	<u> </u>		ed Pumpe	d Surfa	ce Water Pipe			
	·>->>->->->->->->->->->->->->->->-	 Propose Propose 	ed Foul W	ater ned Wa	ter			
\sim		Propose	ed Lined (Geocell	ular Storage			
		Propose	ed Lined F	Permea	ble Paving			
+		Propose	ed Lined F	Fixed D	epth Permeable	e Sub-base	For Atter	nuation
\sim		Propose Rainwat	ea Green er Pine (*	Koof Dosition	t.b.c.)			
	-	SVP (pc	osition t.b.	.c.)	······			
		Propose	ed Lined S	Swale				
		Propose	d Linear	Drain				
	ou	Propose	ed Linear ed Surface	Drainag e Water	Manhole			
	\bigcirc	Propose	ed Flow C	ontrol N	lanhole			
	P	Propose	ed Pump (Chambo	er			
	0	Propose	ed Foul W	ater Ma	anhole ter Manhole			
	⊂ FG	Propose	ed Floor G	Gully				
		Propose	ed Full Re	tention	Interceptor			
BDO BDO BDO P05 P04 P03	-HLM-01 -MMD-01 -HLM-01 30.05.20 20.03.20 08.06.20	-LG-DR-A-00 1-XX-DR-S-0 -00-DR-L-000 023 ND 023 TAF 022 JLW	160 PROI 01 Landso Revision For Infor	due to s mation	SW guidance and	new layout	JLW JLW AJP	AJS AJS AJS
P02	01.06.20	D22 TAF	RIBA Sta	age 2 De	sign		JLW	AJS
P01	18.10.20)21 JLW	Draft for	Comme	nt		AJP	AJS
Statu	us Stamp	Diawii	Descrip				CILKO	App d
	·		PRE	ELIN	IINARY			
					Mott MacDon 4th Floor, Der 150 Arundell Sheffield, S1 United Kingdo T +44 (0)114 F +44 (0)114 W www.mott	ald went House Gate 2JY om 4 236 1242 4 272 4699 mac.com		
Clier	" Ro RM	yal Ma	il Gro		21 1			
	Dra	ainage	Mas	terp	lan			
Desi	gned	J Lea-Wilson		JLW	Ena check	A Precious		A.IP
Draw	/n	J Lea-Wilson		JLW	Coordination	A Simpson		AJS
Dwg	check	A Precious		AJP	Approved	A Simpson		AJS
MME	Project	Number		Scale	at A1		Sec	
10	U10	3689		1:5	000			
Suita	ipility Dea IIItahl	scription	nforr	nati	on		Sui	1. Code
Draw	ving Num	iber		nati			Rev	/ision
ΒĽ)Õ-N	/MD-X	X-00	DF	R-C-000	1	F	2 09

50m

E. MicroDrainage Calculations

ott Ma	cDonal	d									Pag	ge 1
ott Ma	cDonal	d Hou	ise		Br	ighton RM	F					
-10 Sy	denham	Road	1		Net	twork Mode	el 1.5	ōls				
roydon	CR0	2ee									M	
 ate 26	/05/20	23			Des	signed by	LEA75	5161				
ile Br	ighton	Netw	ork 2	2.14.MC	X Che	ecked by					וח	dll IdC
nnovyz	e		_		Net	twork 202	0.1.3					
Maximu	<u>S</u> Ma m Time d Vd	Retur Retur Saximum of Cond Fou Solumetr	SEWEF Pip F Rainfa centrat Sewag ric Rur	<u>Desi</u> <u>Desi</u> e Sizes SR Rainf od (yea: M5-60 (n Ration fill (mm/1) cion (min ge (1/s/1) hoff Coes Des	<u>GN by </u> <u>gn Cri</u> STANDAF fall Mod rs) mm) 20. o R 0. hr) ns) ha) 0. ff. 0. igned w	the Modif teria for D Manhole S del - Englar 100 000 338 50 30 Min Des 000 Min 750 Mi	ied Ra Sizes S nd and A Add Fl Mini Maxi ign Dep Vel for n Slope offits	ation: m TANDAR Wales Low / C imum Ba imum Ba oth for c Auto e for C	D Clima cckdr cckdr cckdr Desi ptim	PI te Chan op Heig op Heig imisati gn only isation	MP (% ge (% ht (m ht (m on (m (m/s (1:X) 100) 0.200) 1.500) 1.200) 1.00) 500
			<u>1</u>	letwork	c Desi	gn Table	for S	torm				
PN	Length (m)	Fall (m)	<u>}</u> Slope (1:X)	Network « - Ind I.Area (ba)	dicates	qn Table pipe capaci Base Flow (1/s)	for S [.] ity < f k (mm)	torm low HYD 1	DIA (mm)	Section	. Туре	Auto
PN	Length (m)	Fall (m)	Slope (1:X)	Vetwork « - Ind I.Area (ha)	dicates T.E. (mins)	qn Table pipe capaci Base Flow (1/s)	for S ity < f k (mm)	torm low HYD 1 SECT (DIA (mm)	Section	Туре	Auto Design
PN \$2.000 \$2.001	Length (m) 13.134 26.892	Fall (m) 0.600 2.033	<u>Slope</u> (1:X) 21.9	<u>Vetwork</u> « - Ind I.Area (ha) 0.036	T.E. (mins) 4.00	gn Table pipe capaci Base Flow (l/s) 0.0	for S ity < f k (mm) 0.600 0.600	torm low HYD 1 SECT (DIA (mm) 150	Section Pipe/Cc Pipe/Cc	Type nduit	Auto Design
PN \$2.000 \$2.001	Length (m) 13.134 26.892	Fall (m) 0.600 2.033	<u>Slope</u> (1:X) 21.9 13.2	<u>Vetwork</u> « - Inc I.Area (ha) 0.036 0.099	<u>C Desi</u> dicates T.E. (mins) 4.00 0.00	gn Table pipe capaci Base Flow (1/s) 0.0 0.0	<u>for S</u> Lty < f k (mm) 0.600 0.600	torm low HYD 1 SECT (o o	DIA (mm) 150 150	Section Pipe/Co Pipe/Co	nduit	Auto Design
PN \$2.000 \$2.001 \$3.000	Length (m) 13.134 26.892 16.392	Fall (m) 0.600 2.033 0.120	Slope (1:X) 21.9 13.2	<pre>Vetwork</pre>	T.E. (mins) 4.00 0.00 4.00	gn Table pipe capaci Base Flow (1/s) 0.0 0.0 0.0	for S Lty < f k (mm) 0.600 0.600	torm low HYD SECT (o o o	DIA (mm) 150 150	Section Pipe/Co Pipe/Co Pipe/Co	nduit nduit	Auto Design
PN \$2.000 \$2.001 \$3.000 \$3.001	Length (m) 13.134 26.892 16.392 3.519	Fall (m) 0.600 2.033 0.120 0.963	<u>Slope</u> (1:X) 21.9 13.2 136.6 3.7	<pre>Network</pre>	T.E. (mins) 4.00 0.00 4.00 0.00	gn Table pipe capaci Base Flow (l/s) 0.0 0.0 0.0 0.0	for S ty < f k (mm) 0.600 0.600 0.600 0.600	torm low HYD 1 SECT (0 0 0	DIA (mm) 150 150 150	Section Pipe/Co Pipe/Co Pipe/Co Pipe/Co	nduit nduit nduit	Auto Design
PN \$2.000 \$2.001 \$3.000 \$3.001 \$2.002	Length (m) 13.134 26.892 16.392 3.519 18.032	Fall (m) 0.600 2.033 0.120 0.963 0.451	Slope (1:X) 21.9 13.2 136.6 3.7 40.0	<pre>Vetwork</pre>	<u>c Desi</u> dicates T.E. (mins) 4.00 0.00 4.00 0.00 0.00	gn Table pipe capaci Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0	for S ity < f k (mm) 0.600 0.600 0.600 0.600 0.600	torm low HYD 1 SECT (0 0 0 0 0 0	DIA (mm) 150 150 150 150 300	Section Pipe/Cc Pipe/Cc Pipe/Cc Pipe/Cc Pipe/Cc	nduit nduit nduit nduit nduit	Auto Design
PN \$2.000 \$2.001 \$3.000 \$3.001 \$2.002 \$4.000	Length (m) 13.134 26.892 16.392 3.519 18.032 18.032	Fall (m) 0.600 2.033 0.120 0.963 0.451 0.099	1 Slope (1:X) 21.9 13.2 136.6 3.7 40.0 184.4	<pre>Vetwork</pre>	<u>x Desid</u> dicates T.E. (mins) 4.00 0.00 4.00 0.00 0.00 4.00	gn Table pipe capaci Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0	<u>for S</u> Lty < f k (mm) 0.600 0.600 0.600 0.600 0.600 0.600	torm low HYD 1 SECT (0 0 0 0 0 0	DIA (mm)) 150 150 150 300 150	Section Pipe/Cc Pipe/Cc Pipe/Cc Pipe/Cc Pipe/Cc Pipe/Cc	nduit nduit nduit nduit nduit nduit	Auto Design
PN \$2.000 \$2.001 \$3.000 \$3.001 \$2.002 \$4.000 \$4.001	Length (m) 13.134 26.892 16.392 3.519 18.032 18.257 3.600	Fall (m) 0.600 2.033 0.120 0.963 0.451 0.099 0.724	Slope (1:X) 21.9 13.2 136.6 3.7 40.0 184.4 5.0	<pre>Vetwork</pre>	<pre>c Desid dicates T.E. (mins) 4.00 0.00 4.00 0.00 0.00 4.00 0.00</pre>	gn Table pipe capaci Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	for S ty < f k (mm) 0.600 0.600 0.600 0.600 0.600 0.600	torm low HYD 1 SECT (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 300 150 150	Section Pipe/Cc Pipe/Cc Pipe/Cc Pipe/Cc Pipe/Cc Pipe/Cc Pipe/Cc	nduit nduit nduit nduit nduit nduit	Auto Design
PN \$2.000 \$2.001 \$3.000 \$3.001 \$2.002 \$4.000 \$4.001 PN	Length (m) 13.134 26.892 16.392 3.519 18.032 18.257 3.600	Fall (m) 0.600 0.963 0.451 0.099 0.724 in T hr) (m	<u>Slope</u> (1:x) 21.9 13.2 136.6 3.7 40.0 184.4 5.0	<pre> Vetwork « - Inc I.Area (ha) 0.036 0.099 0.000 0.000 0.000 0.000 0.000 0.000 0.001 Ne Us/IL E (m)</pre>	<pre>x Desid dicates T.E. (mins) 4.00 0.00 4.00 0.00 0.00 4.00 0.00 4.00 0.00 twork I.Area (ha)</pre>	<pre>qn Table pipe capaci Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.</pre>	for S ty < f k (mm) 0.6000 0.6000 0.6000 0.600 0.6000 0.6000 0.6000	LOTM low HYD 1 SECT (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA mm) 150 150 150 300 150 150	Section Pipe/Co Pipe/Co Pipe/Co Pipe/Co Pipe/Co Pipe/Co Vel ((m/s) (2)	Type nduit nduit nduit nduit nduit nduit	Auto Design
PN \$2.000 \$2.001 \$3.000 \$3.001 \$2.002 \$4.000 \$4.001 PN \$2.0	Length (m) 13.134 26.892 16.392 3.519 18.032 18.257 3.600	Fall (m) 0.600 2.033 0.120 0.963 0.451 0.099 0.724 in T hr) (m .00	<u>Slope</u> (1:X) 21.9 136.6 3.7 40.0 184.4 5.0 2.C. 1 inns) 4.10 7	<u>Vetwork</u> « - Inc I.Area (ha) 0.036 0.099 0.0000 0.00000 0.00000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0	<pre>x Design dicates T.E. (mins) 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 twork I.Area (ha) 0.036</pre>	qn Table pipe capaci Base Flow (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Results T Σ Base Flow (1/s) 0.0	for S ty < f k (mm) 0.600	torm low HYD 1 SECT (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA mm) 150 150 150 300 150 150 150	Section Pipe/Co Pipe/Co Pipe/Co Pipe/Co Pipe/Co Pipe/Co Vel ((m/s) (3 2.16	nduit nduit nduit nduit nduit nduit nduit Cap L/s)	Auto Design
PN \$2.000 \$2.001 \$3.000 \$3.001 \$2.002 \$4.000 \$4.001 PN \$2.0 \$2.0 \$2.0	Length (m) 13.134 26.892 16.392 3.519 18.032 18.257 3.600	Fall (m) 0.600 2.033 0.120 0.963 0.451 0.099 0.724 in I hr) (m .00 .00	Image: Slope (1:x) 21.9 136.6 3.7 40.0 184.4 5.0 Pr.C. Mins) 4.10 4.26	<u>Vetwork</u> « - Ind I.Area (ha) 0.036 0.099 0.0000 0.00000 0.00000 0.00000 0.0000 0.0000 0.00000000	<pre>x Desid dicates T.E. (mins) 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 twork I.Area (ha) 0.036 0.134</pre>	gn Table pipe capaci Base Flow (l/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 E Base Flow (l/s) 0.0 0.0	for S ty < f k (mm) 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 Cable Foul (1/s) 0.0 0.0	torm low HYD SECT (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA (mm) 150 150 150 150 150 150 150	Section Pipe/Cc Pipe/Cc Pipe/Cc Pipe/Cc Pipe/Cc Pipe/Cc Vel ((m/s) (1 2.16 1 2.78 4	Type nduit nduit nduit nduit nduit nduit nduit	Auto Design
PN \$2.000 \$2.001 \$3.000 \$3.001 \$2.002 \$4.000 \$4.001 PN \$2.0 \$2.0 \$2.0 \$2.0 \$2.0 \$3.000 \$4.000 \$3.0000 \$3.0000 \$3.0000 \$3.00000 \$3.00000 \$3.000000000000000000000000000000000000	Length (m) 13.134 26.892 16.392 3.519 18.032 18.257 3.600 18.257 3.600	Fall (m) 0.600 2.033 0.120 0.963 0.451 0.099 0.724 in T hr) (m .00 .00	<u>Slope</u> (1:X) 21.9 136.6 3.7 40.0 184.4 5.0 2.C. 1 4.10 7 4.26 7 4.22 7	<pre>Network</pre>	<pre>x Desid dicates T.E. (mins) 4.00 0.00 4.00 0.00 4.00 0.00 4.00 0.00 twork I.Area (ha) 0.036 0.134 0.000</pre>	qn Table pipe capaci Base Flow (1/s) 0.0	for S ty < f k (mm) 0.600 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	torm low HYD 1 SECT (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIA mm) 150 150 150 150 150 150 150 150 150 0.0 0.0	Section Pipe/Co Pipe/Co Pipe/Co Pipe/Co Pipe/Co Pipe/Co Pipe/Co 2.16 2.78 0.86	Type nduit nduit nduit nduit nduit nduit cap L/s) 38.2 19.2	Auto Design Design Image: I

4.45 72.517

s4.000 50.00 4.41 72.990 0.000

s4.001 50.00 4.43 72.891 0.061

S2.002 50.00

0.227

0.0

©1982-2020 Innovyze

0.0 0.0

0.0 0.0

0.0

0.0 2.49 176.2 30.7

0.0 0.74 13.0 0.0 0.0 4.55 80.4 8.2

Mott MacDonald				Page 2
Mott MacDonald House		Brighton RMF	1	
8-10 Sydenham Road		Network Mode	1	
Croydon CRO 2EE				Micco
Date 26/05/2023		Designed by	LEA75161	
File Brighton Network	k 2.14.MDX	Checked by		Diginacia
Innovvze		Network 2020	.1.3	
	<u>Network De</u>	esign Table f	or Storm	
PN Length Fall Slo	ope I.Area T.1	E. Base	k HYD DIA	Section Type Auto
(m) (m) (1:	:X) (ha) (mi	ns) Flow (l/s)	(mm) SECT (mm)	Design
S2.003 2.556 0.080 31	.9 0.000 0	.00 0.0 (0.600 0 300	Pipe/Conduit 🔺
s2.004 7.169 0.200 35	5.8 0.006 0	.00 0.0 (0.600 o 300	Pipe/Conduit
s2.005 42.433 1.835 23	3.1 0.000 0	.00 0.0 (0.600 o 300	Pipe/Conduit
s2.006 23.090 1.931 12	2.0 0.310 0	.00 0.0	0.600 o 150	Pipe/Conduit 🥚
s5.000 15.219 0.200 76	5.1 0.003 4	.00 0.0 (0.600 o 225	Pipe/Conduit 🔒
s5.001 4.176 0.300 13	3.9 0.044 0	.00 0.0 (0.600 o 225	Pipe/Conduit 💣
s5.002 20.712 1.400 14	1.8 0.040 0	.00 0.0 (0.600 o 225	Pipe/Conduit 🖌
s5.003 13.757 0.900 15	5.3 0.044 0	.00 0.0 (0.600 o 225	Pipe/Conduit 🔐
s5.004 19.625 0.800 24	1.5 0.055 0	.00 0.0 (0.600 o <u>300</u>	Pipe/Conduit 💣
s5.005 4.085 0.200 20	0.4 0.051 0	.00 0.0	0.600 o <u>300</u>	Pipe/Conduit 💣
\$5.006 57.137 2.230 25	5.6 0.000 0	.00 0.0 0	0.600 o 300	Pipe/Conduit 💣
s6.000 2.808 0.075 37	7.4 0.000 4	.00 0.0 (0.600 o <u>150</u>	Pipe/Conduit 🔒
s6.001 26.768 0.458 58	3.4 0.039 0	.00 0.0	0.600 o 150	Pipe/Conduit 💣
s2.007 32.097 0.570 56	5.3 0.429 0	.00 0.0 (0.600 o <mark>150</mark>	Pipe/Conduit 🔒
	Netwo	rk Results Ta	able	
PN Rain T.C. (mm/hr) (mins)	US/IL Σ I.A) (m) (ha	rea ΣBase) Flow (l/s)	Foul Add Flow (l/s) (l/s)	Vel Cap Flow (m/s) (l/s) (l/s)

	(/	(()	(1101)	 (_/_/	(=/ =/	(=/=/	(, 0,	(=/ =/	(=/=/
s2.003	50.00	4.47	72.066	0.288	0.0	0.0	0.0	2.79	197.3	39.0
S2.004	50.00	4.51	71.986	0.294	0.0	0.0	0.0	2.63	186.2	39.7
S2.005	50.00	4.73	71.786	0.294	0.0	0.0	0.0	3.28	232.1	39.7
S2.006	50.00	4.86	69.951	0.603	0.0	0.0	0.0	2.93	51.8«	81.7
S5.000	50.00	4.17	74.600	0.003	0.0	0.0	0.0	1.50	59.7	0.5
S5.001	50.00	4.19	74.400	0.048	0.0	0.0	0.0	3.53	140.2	6.4
S5.002	50.00	4.29	74.100	0.087	0.0	0.0	0.0	3.42	136.0	11.8
S5.003	50.00	4.36	72.700	0.132	0.0	0.0	0.0	3.36	133.8	17.8
S5.004	50.00	4.46	71.725	0.187	0.0	0.0	0.0	3.19	225.3	25.3
S5.005	50.00	4.48	70.925	0.237	0.0	0.0	0.0	3.49	247.0	32.1
S5.006	50.00	4.79	70.725	0.237	0.0	0.0	0.0	3.12	220.4	32.1
S6.000	50.00	4.03	70.000	0.000	0.0	0.0	0.0	1.65	29.2	0.0
S6.001	50.00	4.37	69.925	0.039	0.0	0.0	0.0	1.32	23.3	5.3
S2.007	50.00	5.26	68.020	1.309	0.0	0.0	0.0	1.34	23.7«	177.2

Mott MacDonald		Page 3
Mott MacDonald House	Brighton RMF	
8-10 Sydenham Road	Network Model	
Croydon CR0 2EE		Micro
Date 26/05/2023	Designed by LEA75161	
File Brighton_Network_2.14.MDX	Checked by	Drainacje
Innovyze	Network 2020.1.3	
Simulatic	on Criteria for Storm	
Volumetric Runoff Coeff	0.750 Additional Flow - % of Total Flow	w 0.000
Areal Reduction Factor	1.000 MADD Factor * 10m³/ha Storage	e 0.000
Hot Start (mins)	0 Inlet Coefficcient	t 0.800
Hot Start Level (mm)	0 Flow per Person per Day (l/per/day)) 0.000
Manhole Headloss Coeff (Global)	0.500 Run Time (mins)) 60

Manhole Headloss Coeff (Global) 0.500 Foul Sewage per hectare (1/s) 0.000 Run Time (mins)

Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 5 Number of Online Controls 5 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

	Rainfal	l Model		FSR		Prof	ile Type	Summer
Return	Period	(years)		100		Cv	(Summer)	0.750
		Region	England	and Wales		Cv	(Winter)	0.840
	M5-	-60 (mm)		20.000	Storm	Duratio	n (mins)	30
		Ratio R		0.338				

Mott MacDonald			Page 4
Mott MacDonald House	Brighto	n RMF	
8-10 Sydenham Road	Network	Model	
Croydon CR0 2EE			Micco
Date 26/05/2023	Designe	d by LEA75161	
File Brighton_Network_2.14.MDX	Checked	by	Digitigh
Innovyze	Network	2020.1.3	
Online	Controls	<u>s for Storm</u>	
Orifice Manhole: S2,	DS/PN:	S2.001, Volume (m³): 0.9
Diameter (m) 0.020 Discharge	e Coefficie	ent 0.600 Invert Level	(m) 74.250
Orifice Manhole: S4,	DS/PN:	S3.001, Volume (m³): 1.0
Diameter (m) 0.020 Discharge	e Coefficie	ent 0.600 Invert Level	(m) 73.560
Orifice Manhole: S7,	DS/PN:	S4.001, Volume (m³): 0.8
Diameter (m) 0.020 Discharge	e Coefficie	ent 0.600 Invert Level	(m) 72.891
Hydro-Brake® Optimum Manhol	e: S11,	DS/PN: S2.006, Vol	ume (m³): 5.6
			1000
Unit	: Reference m Head (m)	MD-SHE-0039-1000-2200	-1000
Design	Flow (l/s)		1.0
	Flush-Flo ^m	Calcu	lated
7	Objective	e Minimise upstream st	orage
Sump	Available	9 Du	Yes
Dia	ameter (mm)		39
Invert Minimum Outlet Ding Dia	: Level (m)	6	9.951
Suggested Manhole Dia	ameter (mm) ameter (mm)		1200
Control Points Head (m) Flo	w (l/s)	Control Points	Head (m) Flow (l/s)
Design Point (Calculated) 2.200	1.0	Kick-Flo@	0.347 0.4
Flush-Floim 0.1/1	0.5 Me	an Flow over Head Range	- 0.7
The hydrological calculations have be	een based o	on the Head/Discharge re	elationship for the
Hydro-Brake® Optimum as specified.	Should anot	ther type of control de	vice other than a
Hydro-Brake Optimum® be utilised ther	i these sto	orage routing calculation	ons will be
Depth (m) Flow (1/s) Depth (m) Flo	w (l/s) De	pth (m) Flow (l/s) Dep	th (m) Flow $(1/s)$
0.100 0.5 1.200	0.8	3.000 1.1	7.000 1.7
0.200 0.5 1.400	0.8	3.500 1.2	7.500 1.7
0.300 0.5 1.600	0.9	4.000 1.3	8.000 1.8
0.400 0.5 1.800	0.9	4.500 1.4	8.500 1.9
	1 0	5.000 1.4 5.500 1.5	9.000 L.9 9.500 1.9
0.800 0.6 2.400	1.0	6.000 1.6	J. J. J
1.000 0.7 2.600	1.1	6.500 1.6	
©198	32-2020 1	Innovyze	

Mott MacDonald House Brighton RMF 8-10 Sydenham Road Network Model Croydon CR0 2EE Designed by LEA75161 Date 26/05/2023 Designed by LEA75161 File Brighton_Network_2.144.MDX Checked by Innovyze Network 2020.1.3 Hydro-Brake@ Optimum Manhole: S21, DS/PN: S2,007, Volume (m ³): 8.4 Unit Reference MD-SHE-0049-1500-2000-1500 Design Flow (1/s) 1.5 Plush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Suggested Manhole Diameter (mm) 49 Innewrite (acculated) 2.000 Ninimum Outlet Pipe Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Flush-Flo ^m 0.212 0.9 Mean Flow over Head Range 1.1 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum as specified. Should another type of control device other than a Rydro-Brake Optimum as specified. Should another type of control device other than a Rydro-Brake Optimum as specified. Should another type of control device other than a Rydro-Brake Optimum as specified. Should another type of control device other than a Rydro-Brake Optimum 0 to 1.2 0.100 0.8 1.200	
8-10 Sydenham Road Network Model Croydon CR0 2EE Date 26/05/2023 Designed by LEA75161 Checked by Tinovyze Network 2020.1.3 Network 2020.1.3 Hydro-Brake@ Optimum Manhole: S21, DS/PN: S2,007, Volume (m*): 8.4 Unit Reference MD-SHE-0049-1500-2000-1500 Design Head (m) 2.000 Design Head (m) 2.000 Design Head (m) 2.000 Dimeter (mm) 49 Network (1/s) Dimeter (mm) 75 Suggested Manhole Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Point (Calculated) 2.000 1.5 Flush-Flo ^m Colspan="2">Control Points Head (m) Flow (1/s) Design Point (Calculated) 2.000 1.5 Flush-Flo ^m Colspan="2">Control Points Head (m) Flow (1/s) Design Point (Calculated) Suggested Manhole type of control device other than a <td colsp<="" td=""></td>	
Croydon CR0 2EE Designed by LEA75161 Pile Brighton_Network_2.14.MDX Checked by Decide the provided by the provide	
Date 26/05/2023 File Brighton_Network_2.14.MDX Innovyze Network 2020.1.3 Hydro-Brake@ Optimum Manhole: S21, DS/PN: S2.007, Volume (m ³): 8.4 Unit Reference MD-SHE-0049-1500-2000-1500 Design Head (m) 2.000 Design Head (m) 2.000 Design Flow (1/a) 1.5 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 49 Invert Level (m) 68.020 Control Points Head (m) Flow (1/s) Design Foint (Calculated) 2.000 1.5 Flush-Flo ^m 0.212 0.9 Mean Flow over Head Range - 1.1 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum@ be utilised then these storage calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 0.8 0.300 0.9 1.600 1.4 0.300 0.9 1.600 1.4 0.300 0.9 1.600 1.4 0.400 0.8 1.200 1.5 0.100 0.8 1.200 1.5 0.100 0.8 1.200 1.2 0.100 0.8 1.200 1.2 0.100 0.8 1.200 1.2 0.100 0.8 1.200 1.2 0.100 0.8 1.200 1.4 0.100 0.8 1.200 1.4 0.100 0.8 1.200 1.5 0.100 0.8 1.200 1.4 0.100 0.8 1.200 1.5 0.000 1.4 0.100 0.8 1.200 1.5 0.000 2.7 0.200 0.9 1.600 1.4 0.000 2.1 8.000 2.8 0.400 0.8 1.200 1.5 0.000 2.4 9.500 2.5 1.000 1.1 2.600 1.7 6.500 2.6	
File Brighton_Network_2.14.MDX Checked by Definition Innovyze Network 2020.1.3 Hydro-Brake@ Optimum Manhole: S21, DS/FN: S2.007, Volume (m³): 8.4 Unit Reference MD-SHE-0049-1500-2000-1500 Design Head (m) Design Head (m) Design Flow (1/s) Application Sump Available Yes Diameter (mm) The Head (m) Flow (1/s) Control Points Mead (m) Flow (1/s) Control Points Head (m) Flow (1/s) Design Point (Calculated) Control Points Head (m) Flow (1/s) Mean Flow over Head Range - 1.1 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum@ be utilised then	
Innovyze Network 2020.1.3 Hydro-Brake® Optimum Manhole: S21, DS/FN: S2.007, Volume (m³): 8.4 Unit Reference MD-SHE-0049-1500-2000-1500 Design Head (m) 2.000 Design Flow (1/s) 1.5 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 49 Invert Level (m) 68.020 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Design Foint (Calculated) 2.000 1.5 Flush-Flo ^m 0.212 0.9 Mean Flow over Head Range 1.1 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimume as specified. Should another type of control device other than a Hydro-Brake Optimume be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 0.8 1.200 1.2 0.200 1.5 5.000 2.8 0.300 0.9	
Hydro-Brake@ Optimum Manhole: S21, DS/PN: S2.007, Volume (m³): 8.4 Unit Reference MD-SHE-0049-1500-2000-1500 Design Head (m) 2.000 Design Flow (1/s) 1.5 Flush-Flow Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 49 Invert Level (m) 68.020 Minimum Outlet Pipe Diameter (mm) 1200 Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/s) Design Foint (Calculated) 2.000 1.5 Kick-Flo@ 0.438 0.68 Flush-Flo" 0.212 0.9 Mean Flow over Head Range 1.11 The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake@ Optimum as specified. Should another type of control device other than a Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated 7.000 2.7 0.100 0.8 1.200 1.2 3.000 1.8 7.000 2.7 0.200 0.9 1.400 1.3 3.500 1.9 7.500 2.8	
Hydro-Brake@ Optimum@ be utilised then these storage routing calculations will be invalidated Depth (m) Flow (1/s) 0.100 0.8 1.200 1.2 3.000 1.8 7.000 2.7 0.200 0.9 1.400 1.3 3.500 1.9 7.500 2.8 0.300 0.9 1.600 1.4 4.000 2.1 8.000 2.8 0.400 0.8 1.800 1.4 4.500 2.2 8.500 2.9 0.500 0.8 2.000 1.5 5.000 2.3 9.000 3.0 0.600 0.9 2.200 1.6 5.500 2.4 9.500 3.1 0.800 1.0 2.400 1.6 6.000 2.5 1.000 1.1 2.600 1.7 6.500 2.6 1.1	
0.100 0.8 1.200 1.2 3.000 1.8 7.000 2.7 0.200 0.9 1.400 1.3 3.500 1.9 7.500 2.8 0.300 0.9 1.600 1.4 4.000 2.1 8.000 2.8 0.400 0.8 1.800 1.4 4.500 2.2 8.500 2.9 0.500 0.8 2.000 1.5 5.000 2.3 9.000 3.0 0.600 0.9 2.200 1.6 5.500 2.4 9.500 3.1 0.800 1.0 2.400 1.6 6.000 2.5 1.000 1.1 2.600 1.7 6.500 2.6 1.1	
0.100 0.8 1.200 1.2 3.000 1.8 7.000 2.7 0.200 0.9 1.400 1.3 3.500 1.9 7.500 2.8 0.300 0.9 1.600 1.4 4.000 2.1 8.000 2.8 0.400 0.8 1.800 1.4 4.500 2.2 8.500 2.9 0.500 0.8 2.000 1.5 5.000 2.3 9.000 3.0 0.600 0.9 2.200 1.6 5.500 2.4 9.500 3.1 0.800 1.0 2.400 1.6 6.000 2.5 1.000 3.1 1.000 1.1 2.600 1.7 6.500 2.6 1.1	
0.300 0.9 1.600 1.4 4.000 2.1 8.000 2.8 0.400 0.8 1.800 1.4 4.500 2.2 8.500 2.9 0.500 0.8 2.000 1.5 5.000 2.3 9.000 3.0 0.600 0.9 2.200 1.6 5.500 2.4 9.500 3.1 0.800 1.0 2.400 1.6 6.000 2.5 1.000 3.1 1.000 1.1 2.600 1.7 6.500 2.6 1.1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
0.500 0.8 2.000 1.5 5.000 2.3 9.000 3.0 0.600 0.9 2.200 1.6 5.500 2.4 9.500 3.1 0.800 1.0 2.400 1.6 6.000 2.5 1.000 1.1 2.600 1.7 6.500 2.6 1.6	
0.800 1.0 2.200 1.6 5.300 2.4 5.300 5.1 0.800 1.0 2.400 1.6 6.000 2.5 1.000 1.1 2.600 1.7 6.500 2.6 3.1	
1.000 1.1 2.600 1.7 6.500 2.6	
©1982-2020 Innovyze	

Mott MacDonald		Page 6
Mott MacDonald House	Brighton RMF	
8-10 Sydenham Road	Network Model	
Croydon CR0 2EE		Micro
Date 26/05/2023	Designed by LEA75161	
File Brighton_Network_2.14.MDX	Checked by	Dialitage
Innovyze	Network 2020.1.3	
<u>Storage</u>	<u>Structures for Storm</u>	
Porous Car Park	Mannole: S2, DS/PN: S2.001	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	29.7
Membrane Percolation	(mm/hr) 1000 Length (m)	29.7
Max Percolation	n (l/s) 245.0 Slope (1:X)	0.0
Safety	Factor 2.0 Depression Storage (mm)	5
Po	prosity 0.30 Evaporation (mm/day)	3
Invert Lev	vel (m) 74.250 Membrane Depth (mm)	0
Porous Car Park	Manhole: S4, DS/PN: S3.001	
Infiltration Coefficient Deer	(m/hm) 0 00000 572 - 21-1- (m)	12 0
Mombrane Percelation	(m/hr) 0.00000 Width (m)	13.0
Membrane Percolation Max Percolation	(100/112) 1000 Length (m) (1/s) 130.0 Slope (1.X)	0.0
Safety	Factor 2.0 Depression Storage (mm)	5
Po	prosity 0.30 Evaporation (mm/day)	3
Invert Lev	vel (m) 73.560 Membrane Depth (mm)	0
<u>Porous Car Park</u>	Manhole: S7, DS/PN: S4.001	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	12.0
Membrane Percolation	(mm/hr) 1000 Length (m)	35.0
Max Percolation	n (l/s) 116.7 Slope (1:X)	0.0
Safety	Factor 2.0 Depression Storage (mm)	5
Po	prosity 0.30 Evaporation (mm/day)	3
Invert Te,		0
<u>Complex Manh</u>	nole: S11, DS/PN: S2.006	
<u>Ce</u>	<u>llular Storage</u>	
Inve	rt Level (m) 69.951 Safety Factor 2.0	
Infiltration Coefficient Infiltration Coefficient	Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000	
Depth (m) Area (m²) Inf. Are	ea (m²) Depth (m) Area (m²) Inf. Area (m²)
0.000 410.0 1.600 410.0	0.0 1.601 0.0 0.0	0.0
<u>Pc</u>	prous Car Park	
Tufiltuation Confidents D	(m/hm) 0 00000 Terret Terrel ()	71 551
Membrane Percelation /	(III/III) U.UUUUU INVERT LEVEL (M) nm/hr) 1000 Width (m)	39 N
May Percolation	$(1/s) 113.8 \qquad \qquad \text{WIGUII (M)}$	10.5
Safety I	Factor 2.0 Slope (1:X)	0.0
Poi	rosity 0.30 Depression Storage (mm)	5
©198	32-2020 Innovyze	

Mott MacDonald		Page 7
Mott MacDonald House	Brighton RMF	
8-10 Sydenham Road	Network Model	
Croydon CR0 2EE		Mirro
Date 26/05/2023	Designed by LEA75161	
File Brighton_Network_2.14.MDX	Checked by	Diamaye
Innovyze	Network 2020.1.3	

Porous Car Park

Evaporation (mm/day) 3 Membrane Depth (mm) 0 $\,$

Cellular Storage Manhole: S21, DS/PN: S2.007

Invert Level (m) 68.020 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	580.0	0.0	2.001	0.0	0.0
2.000	580.0	0.0			

Mott Mad	cDona	ld								Page 8
Mott MacDonald House				Bri	ghton RM	F				
8-10 Syd	denhai	m Roa	d		Net	work Mod	el			
Crovdon	CR0	2EE								Misso
$D_2 = 0.26$	/05/2	023			Doc	ianod by	T E 7 7 5	161		MICIO
Date 20,	/ 0 J / Z ·	025		14 MT	Des.	alaal ba	LTA 1 D	101		Drainage
File Bri	ighto	n_Net	work_2	.14.ML	DX Che	скед ру				
Innovyze	9				Net	work 202	0.1.3			
<u>Su</u> Mar I	nhole F Foul Se	y of C Areal Hot Headlos ewage p Numbe: Numb	Reducti Hot Sta Start L ss Coeff per hect r of Ing ber of O er of O Rainfal:	on Fact rt (min evel (m (Globa are (1/ put Hydr Online (ffline (<u>Svr</u> l Model Region 60 (mm)	<u>Simulat</u> or 1.000 s) 0 m) 0 1) 0.500 s) 0.000 cographs Controls Controls <u>athetic F</u> England	<u>y Maximun</u> ion Criter Additio MAD Flow per 0 Number o 5 Number o 0 Number o 8 <u>A ainfall De</u> FSR and Wales 19.900	<u>ia</u> nal Flor D Facto Person p of Stora of Time/ of Real <u>stails</u> Rat Cv (Sum Cv (Win	L (Rank 2 w - % of To r * 10m ³ /h. Inlet Coe per Day (1 age Structu Area Diagr Time Contr Cio R 0.338 mer) 0.950 ater) 0.950	1) for otal Flow a Storage ffiecient /per/day) mres 5 cams 0 cols 0	Storm 0.000 0.000 0.800 0.000
	Retu	Margi Durat cn Peri Clima	Prof Drof Lion(s) Liod(s) (Ate Char	File(s) (mins) (years) nge (%)	sk Warnin alysis T: DTS 15,	ng (mm) 30 imestep F Status 30, 60, 12	0.0 ine Ine ON 0, 240,	DVD Statu. rtia Statu. Summer 360, 480, 2880, 1	s OFF s OFF and Wint 960, 144 5760, 100 1, 30, 1 0, 0,	ser 40, 080 .00 45
WA	RNING:	Half	Drain T	ime has	not beer	n calculate	ed as th	e structur	e is too	full.
PN	US/MH Name	st	orm	Return Period	Climate Change	First Surcha	(X) Irge	First (Y) Flood	First (2 Overflo	A) Overflow w Act.
			<i></i>							
S2.000	S1	2000	Summer	100	+45%	30/100	Q11mm ~~~			
SZ.001	52	2880 960	Summer Winter	100	+43% +45%	30/120 30/480	Summer			
53.000	53	960	Winter	100	+4Jる +45⊱	30/400	Summer			
S2.002	55	1440	Winter	100	+4.5%	50700				
s4.000	55 56	1440	Summer	100	+4.5%	100/120	Summer			
s4.001	S7	1440	Summer	100	+45%	30/240	Summer			
s2.003	S8	10080	Winter	100	+45%					
S2.004	S9	10080	Winter	100	+45%					
s2.005	S10	10080	Winter	100	+45%	100/10080	Summer			
S2.006	S11	10080	Winter	100	+45%	1/240	Summer			
\$5.000	S12	15	Summer	100	+45%					
S5.001	S13	15	Summer	100	+45%					
\$5.002	S14	15	Summer	100	+45%					
\$5.003	S15	15	Summer	100	+45%					
\$5.004	S16	15	Summer	100	+45%	100/15	Summer			
\$5.005	S17	15	Summer	100	+45%	100/15	Summer			
				©	1982-20)20 Innov	vyze			

Mott MacDonald		Page 9
Mott MacDonald House	Brighton RMF	
8-10 Sydenham Road	Network Model	
Croydon CR0 2EE		Micro
Date 26/05/2023	Designed by LEA75161	
File Brighton_Network_2.14.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
s2.000	S1	74.956	-0.044	0.000	0.84			29.3	OK	
S2.001	S2	74.762	0.362	0.000	0.01		2856	0.6	FLOOD RISK	
s3.000	S3	74.140	0.310	0.000	0.00			0.0	FLOOD RISK	
S3.001	S4	74.140	0.430	0.000	0.01			0.6	FLOOD RISK	
S2.002	S5	72.528	-0.289	0.000	0.01			1.2	OK	
S4.000	S6	73.284	0.144	0.000	0.00			0.0	SURCHARGED	
S4.001	S7	73.284	0.243	0.000	0.01		1272	0.5	FLOOD RISK	
S2.003	S8	72.141	-0.225	0.000	0.02			1.4	OK	
S2.004	S9	72.141	-0.145	0.000	0.01			1.4	OK	
S2.005	S10	72.140	0.054	0.000	0.01			1.4	SURCHARGED	
S2.006	S11	72.139	2.038	0.000	0.02		8976	1.0	FLOOD RISK	
S5.000	S12	74.633	-0.192	0.000	0.05			2.8	OK	
S5.001	S13	74.513	-0.112	0.000	0.50			38.9	OK	
S5.002	S14	74.223	-0.102	0.000	0.58			71.3	OK	
S5.003	S15	72.871	-0.054	0.000	0.93			107.7	OK	
S5.004	S16	72.081	0.056	0.000	0.77			149.9	SURCHARGED	
S5.005	S17	71.595	0.370	0.000	1.67			187.6	FLOOD RISK	

©1982-2020 Innovyze

Mott MacDonald		Page 10
Mott MacDonald House	Brighton RMF	
8-10 Sydenham Road	Network Model	
Croydon CR0 2EE		Mirro
Date 26/05/2023	Designed by LEA75161	
File Brighton_Network_2.14.MDX	Checked by	Diamage
Innovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Storm	Return Period	Climate Change	First Surch	: (X) arge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S5.006	S18	15 Sun	nmer 100	+45%						70.949
S6.000	S19	15 Sun	nmer 100	+45%	100/15	Summer				70.366
S6.001	S20	15 Sun	nmer 100	+45%	100/15	Summer				70.373
S2.007	S21	10080 Wir	nter 100	+45%	1/60	Summer				70.010

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S5.006	S18	-0.076	0.000	0.91			189.7	OK	
S6.000	S19	0.216	0.000	0.23			3.9	SURCHARGED	
S6.001	S20	0.298	0.000	1.27			28.3	SURCHARGED	
S2.007	S21	1.840	0.000	0.07			1.5	SURCHARGED	

©1982-2020 Innovyze

Mott Ma	cDonal	.d									Pa	ge 1
Mott Ma	cDonal	d Hou	ıse		Br	ighton RM	F					
8-10 Sy	denham	ı Road	c		Net	twork Mod	el 31	S				
Croydon	CR0	2ee									M	icro
Date 26	/05/20	23			Des	signed by	LEA7	5161				
File Br	ighton	. Netv	work 3	3.00	Che	ecked by						dlidye
Innovvz	e				Net		0.1.3					
Innovyze Network 2020.1.3 <u>STORM SEWER DESIGN by the Modified Rational Method</u> <u>Design Criteria for Storm</u> Pipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales Return Period (years) 100 PIMP (%) 100 M5-60 (mm) 20.000 Add Flow / Climate Change (%) 0 Ratio R 0.338 Minimum Backdrop Height (m) 0.200 Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits <u>Network Design Table for Storm</u> « - Indicates pipe capacity < flow												
PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Secti	on Type	e Auto Design
S2.000	13.134	0.600	21.9	0.036	4.00	0.0	0.600	0	150	Pipe/	Conduit	- A
S2.001	26.892	2.033	13.2	0.099	0.00	0.0	0.600	0	150	Pipe/	Conduit	: 🏅
	10 000	0 1 5 -	100			÷ -	0 000					
S3.000 S3.001	16.392 3 519	0.120	136.6 २ ७	, U.000 1 N N 93	4.00	0.0	0.600	0	150 150	Pipe/	Conduit Conduit	: 🔒 - 🕰
S2.002	18.032	0.451	40.0	0.000	0.00	0.0	0.600	0	300	Pipe/	Conduit	- U
					2.00	0.0		Ŭ	200			- 🥑
S4.000	18.257	0.099	184.4	0.000	4.00	0.0	0.600	0	150	Pipe/	Conduit	÷ 👌
S4.001	3.600	0.724	5.0	0.061	0.00	0.0	0.600	0	150	Pipe/	Conduit	ឹ
PN	I Ra: (mm/	in] 'hr) (r	F.C. mins)	<u>Ne</u> Us/IL 3 (m)	etwork E I.Area (ha)	Results I Σ Base Flow (1/s)	Table Foul (1/s)	Add F	low?)	Vel (m/s)	Cap (1/s)	Flow (1/s)
					0 00-		<u> </u>					
S2.0	00 50	.00	4.10	74.850	0.036	0.0	0.0		0.0	2.16	38.2	4.9
52.0	UL 30	.00	4.20	14.200	0.⊥34	0.0	0.0		0.0	∠./४	49.2	10.2
S3.0	00 50	.00	4.32	73.680	0.000	0.0	0.0		0.0	0.86	15.2	0.0

s2.002 50.00 4.45 72.517 0.227 0.0 0.0 0.0 2.49 176.2 30.7

©1982-2020 Innovyze

0.0 0.0 0.0 0.0 0.0 0.74 13.0 0.0 0.0 4.55 80.4 8.2

S4.00050.004.4172.9900.000S4.00150.004.4372.8910.061

Mott Ma	cDonal	.d								Pag	e 2
Mott Ma	cDonal	d Hou	lse		Br	ighton RM	F				
8-10 Sy	denham	n Road	l		Ne	twork Mod	el 31	S			
Croydon	CR0	2ee								Mi	
Date 26	/05/20	23			De	signed by	LEA7	5161			
File Brighton_Network_3.00 Checked by											
Innovyz	e	_			Ne	twork 202	0.1.3				
			N	letwor}	<u>Desi</u>	gn Table	for S	torm			
PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)		Design
s2.003	2.556	0.080	31.9	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	A
S2.004	7.169	0.200	35.8	0.006	0.00	0.0	0.600	0	300	Pipe/Conduit	
S2.005	42.433	1.835	23.1	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	
S2.006	23.090	1.931	12.0	0.310	0.00	0.0	0.600	0	150	Pipe/Conduit	
s5.000	15.219	0.200	76.1	0.003	4.00	0.0	0.600	0	225	Pipe/Conduit	a
s5.001	4.176	0.300	13.9	0.044	0.00	0.0	0.600	0	225	Pipe/Conduit	- Ā
\$5.002	20.712	1.400	14.8	0.040	0.00	0.0	0.600	0	225	Pipe/Conduit	
S5.003	13.757	0.900	15.3	0.044	0.00	0.0	0.600	0	225	Pipe/Conduit	
s5.004	19.625	0.800	24.5	0.055	0.00	0.0	0.600	0	300	Pipe/Conduit	
S5.005	4.085	0.200	20.4	0.051	0.00	0.0	0.600	0	300	Pipe/Conduit	
S5.006	57.137	2.230	25.6	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	ď
s6.000	2.808	0.075	37.4	0.000	4.00	0.0	0.600	0	150	Pipe/Conduit	a
S6.001	26.768	0.458	58.4	0.039	0.00	0.0	0.600	0	150	Pipe/Conduit	
s2.007	32.097	0.570	56.3	0.429	0.00	0.0	0.600	0	150	Pipe/Conduit	۵
				Ne	twork	Results '	<u> Table</u>				

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S2.003	50.00	4.47	72.066	0.288	0.0	0.0	0.0	2.79	197.3	39.0
S2.004	50.00	4.51	71.986	0.294	0.0	0.0	0.0	2.63	186.2	39.7
S2.005	50.00	4.73	71.786	0.294	0.0	0.0	0.0	3.28	232.1	39.7
S2.006	50.00	4.86	69.951	0.603	0.0	0.0	0.0	2.93	51.8«	81.7
S5.000	50.00	4.17	74.600	0.003	0.0	0.0	0.0	1.50	59.7	0.5
S5.001	50.00	4.19	74.400	0.048	0.0	0.0	0.0	3.53	140.2	6.4
S5.002	50.00	4.29	74.100	0.087	0.0	0.0	0.0	3.42	136.0	11.8
S5.003	50.00	4.36	72.700	0.132	0.0	0.0	0.0	3.36	133.8	17.8
S5.004	50.00	4.46	71.725	0.187	0.0	0.0	0.0	3.19	225.3	25.3
S5.005	50.00	4.48	70.925	0.237	0.0	0.0	0.0	3.49	247.0	32.1
S5.006	50.00	4.79	70.725	0.237	0.0	0.0	0.0	3.12	220.4	32.1
S6.000	50.00	4.03	70.000	0.000	0.0	0.0	0.0	1.65	29.2	0.0
S6.001	50.00	4.37	69.925	0.039	0.0	0.0	0.0	1.32	23.3	5.3
S2.007	50.00	5.26	68.020	1.309	0.0	0.0	0.0	1.34	23.7«	177.2

Mott MacDonald		Page 3
Mott MacDonald House	Brighton RMF	
8-10 Sydenham Road	Network Model 31s	
Croydon CR0 2EE		Micro
Date 26/05/2023	Designed by LEA75161	
File Brighton_Network_3.00	Checked by	Diamage
Innovyze	Network 2020.1.3	

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 0.000Hot Start (mins)0Hot Start Level (mm)0 Flow per Person per Day (1/per/day) 0.000Manhole Headloss Coeff (Global)0.500Foul Sewage per hectare (1/s)0.000

Number of Input Hydrographs 0 Number of Storage Structures 5 Number of Online Controls 5 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

	Rainfall Mod	lel	FSR		Profile	е Туре	Summer
Return	Period (year	s)	100		Cv (S	ummer)	0.750
	Regi	on England	and Wales		Cv (W	inter)	0.840
	M5-60 (m	m)	20.000	Storm D	Duration	(mins)	30
	Ratio	R	0.338				

Mott MacDonald			Page 4
Mott MacDonald House	Brighto	on RMF	
8-10 Sydenham Road	Network	x Model 31s	
Croydon CR0 2EE			Micco
Date 26/05/2023	Designe	ed by LEA75161	
File Brighton_Network_3.00	Checked	l by	Diamaye
Innovyze	Network	2020.1.3	
	~		
Online	Control	<u>s for Storm</u>	
Orifice Manhole: S2,	DS/PN:	S2.001, Volume (m³):	: 0.9
Diameter (m) 0.020 Discharge	e Coeffici	ent 0.600 Invert Level (m	n) 74.250
Orifice Manhole: S4,	DS/PN:	S3.001, Volume (m³):	: 1.0
Diameter (m) 0.020 Discharge	e Coeffici	ent 0.600 Invert Level (m	n) 73.560
Orifice Manhole: S7,	DS/PN:	S4.001, Volume (m ³):	: 0.8
Diameter (m) 0.020 Discharge	e Coeffici	ent 0.600 Invert Level (m	n) 72.891
Hydro-Brake® Optimum Manhol	e: S11,	DS/PN: S2.006, Volum	ne (m³): 5.6
Unit	Referenc	e MD-SHE-0048-1500-2200-1	500
Desig	yn Head (m	.) 2.	200
Design	Flow (1/s) TM Colevia	1.5
	Objectiv	e Minimise upstream stor	age
7	Applicatio	n Surf	ace
Sump	Availabl	e	Yes
Dia	ameter (mm - Level (m	.)) 69.	48 951
Minimum Outlet Pipe Dia	ameter (mm)	75
Suggested Manhole Dia	ameter (mm	.) 1	200
Control Points Head (m) Flo	w (l/s)	Control Points	Head (m) Flow (l/s)
Design Point (Calculated) 2.200	1.5	Kick-Flo®	0.428 0.7
FIUSH-FIO. 0.212	0.9 1	ean Flow over nead kange	- 1.1
The hydrological calculations have be	een based	on the Head/Discharge rel	ationship for the
Hydro-Brake® Optimum® be utilized the	Should ano	ther type of control devi	ce other than a
invalidated	i these st	orage routing carculation	S WIII DE
Depth (m) Flow (l/s) Depth (m) Flo	w (l/s) D	epth (m) Flow (l/s) Depth	(m) Flow (l/s)
0.100 0.8 1.200	1.1	3.000 1.7 7	.000 2.6
0.200 0.9 1.400	1.2	3.500 1.9 7	.500 2.6
0.300 0.9 1.600	1.3	4.000 2.0 8	.000 2.7
	1.4	4.500 2.1 8	2.8
	1 5	5.000 2.2 9 5.500 2.2 9	1.000 2.9 1.500 2.9
0.800 1.0 2.400	1.6	6.000 2.4	
1.000 1.1 2.600	1.6	6.500 2.5	
 ∩100	32-2020	Innovyze	
		11110 V Y Z G	

Mott MacDonald					1	Page 5
Mott MacDonald House		Brighto	on RMF		(
8-10 Sydenham Road		Network				
Croydon CR0 2EE						Mirro
Date 26/05/2023		Designe	ed by LEA7	5161		
File Brighton_Networ	k_3.00	Checked	l by			Diamaye
Innovyze		Network	2020.1.3	}	I	
<u>Hydro-Brake® Opt</u>	imum Manhol	le: S21,	DS/PN: S2	2.007, Vol	ume (m³): 8.4
		+ D. C		70 2000 2000	2000	
	Uni Desi	n Head (m	e MD-SHE-UU	/0-3000-2000	-3000	
	Design	Flow (l/s)		3.0	
		Flush-Flo	TM	Calcu	lated	
		Objectiv	e Minimise n	upstream st	orage rface	
	Sum	nppiicacio np Availabl	e	54	Yes	
	Di	ameter (mm)		70	
Minimum	Inver	t Level (m	.)	6	8.020	
Minimum O Suaaest	ed Manhole Di	ameter (mm ameter (mm	.)		1200	
		,			-	
Control Points	Head (m) Flo	ow (l/s)	Control	Points	Head (m) Flow (l/s)
Design Point (Calculated)	2.000	3.0		Kick-Flo	B 0.63	0 1.8
Flush-Flo™	0.310	2.2 M	ean Flow ove	er Head Range	9	- 2.3
Hydro-Brake® Optimum as Hydro-Brake Optimum® be invalidated	specified. utilised the	Should ano en these st	ther type o orage routi	f control de ng calculati	vice othe ons will	r than a be
Depth (m) Flow (1/s)	Depth (m) Flo	ow (1/s) D	epth (m) Flo	ow (l/s) Dep	th (m) Fl	Low (1/s)
0.100 1.8	1.200	2.4	3.000	3.6	7.000	5.4
0.200 2.1	1.400	2.5	3.500	3.9	7.500	5.6
0.300 2.2	1.600	2.7	4.000	4.1	8.000	5.7
0.500 2.1	2.000	3.0	5.000	4.6	9.000	6.1
0.600 1.9	2.200	3.1	5.500	4.8	9.500	6.2
0.800 2.0	2.400	3.3	6.000	5.0		
1.000 2.2	2.600	3.4	0.500	5.2		
	@1.0	00 0000	T			
	1111 0	8/-/11/11				

Mott MacDonald		Page 6
Mott MacDonald House	Brighton RMF	
8-10 Sydenham Road	Network Model 31s	
Croydon CR0 2EE		Micro
Date 26/05/2023	Designed by LEA75161	Dcainago
File Brighton_Network_3.00	Checked by	Diamaye
Innovyze	Network 2020.1.3	
<u>Storage</u>	<u>Structures for Storm</u>	
Porous Car Park	Manhole, S2 DS/DN, S2 001	
	Maimore. 52, 55/11. 52.001	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	29.7
Membrane Percolation	(mm/hr) 1000 Length (m)	29.7
Max Percolation	n (l/s) 245.0 Slope (1:X)	0.0
Safety	Factor 2.0 Depression Storage (mm)	5
Po	prosity 0.30 Evaporation (mm/day)	3
Invert Lev	vel (m) /4.250 Membrane Depth (mm)	0
Porous Car Park	Manhole: S4, DS/PN: S3.001	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	13.0
Membrane Percolation	(mm/hr) 1000 Length (m)	36.0
Max Percolation	n (l/s) 130.0 Slope (1:X)	0.0
Safety	Factor 2.0 Depression Storage (mm)	5
Po	prosity 0.30 Evaporation (mm/day)	3
Invert Lev	vel (m) 73.560 Membrane Depth (mm)	0
<u>Porous Car Park</u>	Manhole: S7, DS/PN: S4.001	
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m)	12.0
Membrane Percolation	(mm/hr) 1000 Length (m)	35.0
Max Percolation	n (l/s) 116.7 Slope (1:X)	0.0
Safety	Factor 2.0 Depression Storage (mm)	5
Po Invent Lev	prosity 0.30 Evaporation (mm/day)	3
Invert Te,		0
<u>Complex Manh</u>	nole: S11, DS/PN: S2.006	
<u>Ce</u>	<u>llular Storage</u>	
Inver Infiltration Coefficient	rt Level (m) 69.951 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95	
Depth (m) Area (m ²) Inf. Are	ea (m ²) Depth (m) Area (m ²) Inf. Area (m²)
0.000 215.0	0 0 1 601 0 0	0 0
1.600 315.0	0.0	0.0
	1	
Pc	brous Car Park	
Infiltration Coefficient Base	(m/hr) 0.00000 Invert Level (m)	71.551
Membrane Percolation (r	nm/hr) 1000 Width (m)	39.0
Max Percolation	(1/s) 87.8 Length (m)	8.1
Safety I	ractor 2.0 Slope (1:X) rosity 0.30 Depression Storage (mm)	5
	2 0001030 (mm)	-
©198	32-2020 Innovyze	
L		

Mott MacDonald		Page 7
Mott MacDonald House	Brighton RMF	
8-10 Sydenham Road	Network Model 31s	
Croydon CR0 2EE		Micro
Date 26/05/2023	Designed by LEA75161	
File Brighton_Network_3.00	Checked by	Diamage
Innovyze	Network 2020.1.3	

Porous Car Park

Evaporation (mm/day) 3 Membrane Depth (mm) 0 $\,$

Cellular Storage Manhole: S21, DS/PN: S2.007

Invert Level (m) 68.020 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	435.0	0.0	2.001	0.0	0.0
2.000	435.0	0.0			

Mott	MacDo	nald								Page	8	
Mott	MacDo	nald	House	2		Brightor	n RMF					
8-10	Syden	ham 1	Road		1	Network	Model	3ls				
Croyd	on C	R0 21	EE							Mice		
Date	26/05	/202	3			Designed	l by L	EA75161			U	
File	Briah	ton 1	- Networ	k 3.00)	Checked	by			Drai	nage	
Tnnov	<u></u>			<u></u>	<u> </u>	Notwork	2020	1 3				
	уге					Network	2020.	1.5				
Cummany of Critical Deculto by Marinum Level (Deck 1) for Charm												
<u>Samaly of offerent Reparce by Hartman Devel (Rank 1, 101 Deofm</u>												
					Sim	ulation Ci	<u>citeria</u>					
		Ar	eal Red	uction H	Factor 1	.000 Add	ditional	l Flow - %	of Total F	'low 0.000)	
			Hot	Start	(mins)	0	MADD I	Factor * 10)m³/ha Stor	age 0.000)	
	Manhol	e Hea	dloss C	oeff (G	lobal) O.	.500 Flow	per Pei	rson per Da	av (l/per/d	lav) 0.000)	
	Foul	Sewa	ge per	hectare	(l/s) 0	.000	1					
		Nu	umber of	Input	Hydrogra	phs 0 Num	ber of	Storage St	ructures 5			
		N	Number Jumber (or Unli of Offli	ne Contr ne Contr	ols 5 Num ols 0 Num	ber of ber of	Real Time	Controls 0			
		-				010 0 1101	001 01	1001 1100	001101010			
					Synthet	ic Rainfa	ll Deta	<u>ils</u>				
			Rair	nfall Mo	del		FSR	Ratio R	0.338			
				Кед м5-60 (nm)	and and W	ales Cv 900 Cv	(Summer)	0.950			
				110 00 (iluit)	19		(WINCOI)	0.900			
		M	argin f	or Flood	d Risk Wa	arning (mm) 300.C) DVD S	Status OFF			
					Analysi	ls Timeste	p Fine	e Inertia S	Status OFF			
						DTS Statu	.s ON	1				
		_		Profile	(s)			Sı	ummer and W	linter		
		D	uration	(s) (mi	ns)	15, 30, 60), 120,	240, 360,	480, 960, 380, 5760,	10080		
	Re	eturn	Period(s) (yea	rs)			20	1, 30	, 100		
		С	limate	Change	(%)				Ο,	0, 45		
	WARNI	NG: Ha	alf Dra	in Time	has not	been calc	ulated	as the str	ucture is t	too full.		
											Wator	
	US/MH			Return	Climate	First	(X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	St	torm	Period	Change	Surcha	arge	Flood	Overflow	Act.	(m)	
a2 000	01	1 -	C	100							74 050	
S2.000	S1 </td <td>15 2880</td> <td>Summer</td> <td>100 100</td> <td>+45% +45%</td> <td>30/120</td> <td>Summer</td> <td></td> <td></td> <td></td> <td>74.956</td>	15 2880	Summer	100 100	+45% +45%	30/120	Summer				74.956	
s3.000	52 S3	1440	Summer	100	+45%	30/480	Summer				74.140	
S3.001	S4	1440	Summer	100	+45%	30/60	Summer				74.140	
S2.002	S5	1440	Winter	100	+45%						72.528	
S4.000	S6	1440	Summer	100	+45%	100/120	Summer				73.284	
S2.003	57 58	1440 5760	Summer Winter	100	+45종 +45원	30/240	summer				72,109	
s2.004	S9	5760	Winter	100	+45%						72.107	
s2.005	S10	5760	Winter	100	+45%	100/5760	Winter				72.107	
S2.006	S11	5760	Winter	100	+45%	1/120	Summer				72.105	
S5.000	S12	15	Summer	100	+45%						74.633	
S5.001	S13 S14	15 15	Summer	100	+45% +45%						74 223	
s5.003	S14 S15	15 15	Summer	100	+45%						72.871	
s5.004	S16	15	Summer	100	+45%	100/15	Summer				72.081	
S5.005	S17	15	Summer	100	+45%	100/15	Summer				71.595	
					@1000	<u></u>		7.0				
					OT 207	2-2020 I	movyz	ie I				

Mott MacDonald		Page 9
Mott MacDonald House	Brighton RMF	
8-10 Sydenham Road	Network Model 31s	
Croydon CR0 2EE		Micro
Date 26/05/2023	Designed by LEA75161	
File Brighton_Network_3.00	Checked by	Diamage
Innovyze	Network 2020.1.3	1

Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S2.000	S1	-0.044	0.000	0.84			29.3	OK	
S2.001	s2	0.361	0.000	0.01		2856	0.6	FLOOD RISK	
S3.000	s3	0.310	0.000	0.00			0.0	FLOOD RISK	
S3.001	S4	0.430	0.000	0.01		1560	0.6	FLOOD RISK	
S2.002	S5	-0.289	0.000	0.01			1.2	OK	
S4.000	S6	0.144	0.000	0.00			0.0	SURCHARGED	
S4.001	s7	0.243	0.000	0.01		1272	0.5	FLOOD RISK	
S2.003	S8	-0.257	0.000	0.02			1.6	OK	
S2.004	S9	-0.179	0.000	0.01			1.6	OK	
S2.005	S10	0.021	0.000	0.01			1.6	SURCHARGED	
S2.006	S11	2.004	0.000	0.03		5808	1.5	FLOOD RISK	
S5.000	S12	-0.192	0.000	0.05			2.8	OK	
S5.001	S13	-0.112	0.000	0.50			38.9	OK	
S5.002	S14	-0.102	0.000	0.58			71.3	OK	
S5.003	S15	-0.054	0.000	0.93			107.7	OK	
S5.004	S16	0.056	0.000	0.77			149.9	SURCHARGED	
S5.005	S17	0.370	0.000	1.67			187.6	FLOOD RISK	

©1982-2020 Innovyze

Mott MacDonald		Page 10
Mott MacDonald House	Brighton RMF	
8-10 Sydenham Road	Network Model 31s	
Croydon CR0 2EE		Mirro
Date 26/05/2023	Designed by LEA75161	
File Brighton_Network_3.00	Checked by	Diamage
Innovyze	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S5.006	S18	15 Summer	100	+45%					70.949
S6.000	S19	15 Summer	100	+45%	100/15 Summer				70.366
S6.001	S20	15 Summer	100	+45%	100/15 Summer				70.373
S2.007	S21	2880 Winter	100	+45%	1/30 Summer				69.997

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
S5.006	S18	-0.076	0.000	0.91			189.7	OK	
S6.000	S19	0.216	0.000	0.23			3.9	SURCHARGED	
S6.001	S20	0.298	0.000	1.27			28.3	SURCHARGED	
S2.007	S21	1.827	0.000	0.13			3.0	SURCHARGED	

©1982-2020 Innovyze

F. Typical SuDS Maintenance Regime

Schedule	Required Action	Geocellular Storage	Permeable Paving	Flow Control	Collection Systems	Swale
	Visual Inspection	Monthly for three months after installation	Monthly for three months after installation	Monthly	Monthly	Monthly or as required
	Remove Litter and Debris	Monthly removal of litter from catchment area	Once a year after Autumn leaves fall, or reduced frequency as required	Once a year after Autumn leaves fall, or reduced frequency as required	Monthly	Monthly or as required
	Inspect and Identify Any Areas Not Operating Correctly.	Monthly or 3 months, then annually	Every month for first year, then annually	-	Monthly	Monthly
egular	Cut Grass	-	-	-	-	Mow amenity grass access paths and verges surrounding swales at 35- 50mm minimum and 75mm maximum or as specified Mow swales at 10mm with 150mm maximum to filter and control runoff in normal grass swales, removing first and last cut in season, and if grass is longer than 150mm removing cuttings to wildlife piles on site.
	Manage Other Vegetation and Remove Nuisance Plants	-	As required - once per year	-	Monthly	As required
	Inspect Inlets, Outlets and Overflows for Blockages/Damage	Monthly for first year then annually	-	Monthly	Monthly	Monthly
	Inspect Water Bodies for Signs of Poor Quality	-	-	-	-	-
	Inspect Vegetation Coverage	-	-	-	-	As required
	Inspect Banksides, Pipework and Structures for Physical Damage	-	-	-	-	As required
	Inspect Inlets and facility surface for silt accumulation	-	-	-	-	Half Yearly until appropriate removal frequency is established
	Tidy All Dead Growth Before Start of Growing Season	-	-	-	-	Remove visible dead material
	Remove Sediment from Inlets, Outlets and Forebays	-	-	Annually	Annually	As required
	Check surface of permeable paving for blockages and clear	Annually	Annually	-	-	-
	Manage Wetland Plants	-	-	-	-	-
al	Reseed Areas of Poor Vegetation Growth	-	-	-	-	As required or if bare soil is exposed over 10% or more of treatment area
asion	Remove Sediment from Main Body	Every 5 years or as required	Inspect annually, repair as required	-	-	As required
Occa	Remove Sediment from Inlets, Outlets and Forebays	-	Inspect annually, repair as required	-	Annually	As required
	Repair Erosion or other Damage by Reseeding or Re-turfing	-	-	-	-	As required
	Repair /Rehabilitation of Inlets, Outlets and Overflows	Visual inspection after storm, replace as required	-	-	-	-
ctions	Relevel Uneven Surfaces and Reinstate Design Levels	-	As required to remove or replace cracked blocks and remediate surrounding landscape	-	-	As required
al /	Rehabilitate of surface and upper substructure by vacuum sweeping	-	every 5 years or as required	-	-	-
Remedi	Remove and dispose of oils or petrol residues using safe practices	-	-	Annually	Annually	As required - dig out and replace growing medium and reseed

mottmac.com